期刊文献+

金氰化浸出过程自适应优化 被引量:4

Adaptive optimization for gold cyanidation leaching process
下载PDF
导出
摘要 以某湿法冶炼厂金氰化浸出过程为背景,研究了浸出过程的自适应实时优化问题。针对实际过程中的模型失配问题,提出了一种金氰化浸出过程的修正项自适应实时优化策略,利用实际过程测量值及梯度信息不断修正原优化问题,使其迭代收敛到实际过程的最优设定点。仿真结果表明在过程输出存在适量的测量噪声时,对于模型参数不确定性、结构不确定性以及工况改变3种情况,该方法经过数次的迭代最终都能够收敛到实际过程的最优设定点附近,节约了生产成本,而且不需要模型更新步骤,这为湿法冶金全流程优化控制的顺利实施奠定了重要基础。 The adaptive real-time optimization (RTO) of gold cyanidation leaching process in a hydrometallurgy plant was investigated. To solve plant-model mismatch, an adaptive real-time optimization strategy based on the modifier adaptation method was proposed, and the real plant data and gradient information were used to correct the original optimization problem iteratively to drive its solution to converge to the optimal set point for the plant. The simulation results showed that in the presence of moderate measurement noise and model uncertainty, the iterates based on the proposed adaptive strategy could converge to the optimal set point for the plant after several iterations and moreover the step of parameter estimation was not necessary, laying an important foundation for the successful implementation of the plant-wide optimization and control for hydrometallurgy process.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第12期4890-4897,共8页 CIESC Journal
基金 国家高技术研究发展计划项目(2011AA060204) 国家自然科学基金项目(61203103 61374147)~~
关键词 氰化浸出 机理模型 模型不确定性 实时优化 自适应策略 cyanidation leaching mechanistic model model uncertainty real-time optimization adaptive strategy
  • 相关文献

参考文献20

二级参考文献32

  • 1刘涛,吴卫国,张一敏,胡承凡.低品位含金硫精矿氰化提金的试验研究[J].矿冶工程,2004,24(3):32-34. 被引量:14
  • 2周丽,文书明,李华伟.难浸金矿预处理技术及其应用[J].云南冶金,2004,33(4):7-10. 被引量:6
  • 3江爱朋,邵之江,陈曦,方学毅,耿大钊,郑小青,钱积新.乙烯生产流程中联塔模拟与优化[J].化工学报,2006,57(9):2128-2134. 被引量:17
  • 4谢磊,王树青.递归核PCA及其在非线性过程自适应监控中的应用[J].化工学报,2007,58(7):1776-1782. 被引量:12
  • 5Chachuat B, Srinivasan B, et al. Adaptation strategies for real-time optimization [ J ]. Computers & Chemical Engineering, 2009, 33 (10): 1557-1567.
  • 6Fang X, Shao Z, Wang Z, Chen W, Wang K, Zhang Z, Zhou Z, Chen X, Qian J. Memory enhancement optimization (MEO) for real-time optimization of industrial process [J]. Ind. Ene. Chem. Res. , 2009, 48 (1) : 499-509.
  • 7Kuhl P, Diehl M, et al. A real time algorithm for moving horizon state and parameter estimation [J]. Computers Chemical Engineering, 2011, 35 (1) : 71-83.
  • 8Zuo K, Wu W. Semi-realtlme optimization and control of a fedbatch fermentation system[J]. Computers and Chemical Engineering, 2000, 24 (2): 1105-1109.
  • 9ArpornwichanopA, Kittisupakorn P, Mujtaba I. On-line dynamic optimization and control strategy for improving the performance of batch reactors [J]. Chemical Engineering and Processing, 2005, 44 (1): 101-114.
  • 10Rahman S, Palanki S. State feedback synthesis for on-line optimization of batch reactors with multiple manipulated inputs [J]. Computers and Chemical Engineering, 1998, 22 (10): 1429-1439.

共引文献30

同被引文献37

  • 1马荣骏.湿法冶金新发展[J].湿法冶金,2007,26(1):1-12. 被引量:36
  • 2Sun Ji(孙戬).Gold and Silver Metallurgy(金银冶金) [M].Beijing:Metallurgical Industry Press,2008:129-159.
  • 3de Andrade Lima L R P,Hodouin D.Optimization of reactor volumes for gold cyanidation [J].Minerals Engineering,2005,18(7):671-679.
  • 4de Andrade Lima L R P.Some remarks on the reactor network synthesis for gold cyanidation [J].Minerals Engineering,2006,19(2):154-161.
  • 5Argyri A A,Panagou E Z,Tarantilis P A.Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks [J].Sensors and Actuators B,2010,145(1):146-154.
  • 6Neelakantam V Venkatarayalu,Tapabrata Ray.Optimum design of Yagi-Uda antennas using computational intelligence [J].IEEE Transaction on Antennas and Propagation,2004,52(7):1811-1818.
  • 7Motiian S,Aghababaie M,Soltanian-Zadeh H.Particle swarm optimization(PSO) of power allocation in cognitive radio systems with interference constraints Broadband Network and Multimedia Technology//Proc.IEEE Congress on Evolutionary Computation [C].New Orleans,USA,2011:558-562.
  • 8James K,Eberhart R C.Particle swarm optimization//Proc.IEEE International Conference on Neural Networks [C].Piscataway NJ,USA,1995:1942-1948.
  • 9Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources//Proc.IEEE Conference on Evolutionary Computation [C].Seoul,Korea,2001:81-86.
  • 10Shi Y,Eberhart R C.A modified particle swarm optimizer//Proc.IEEE Congress on Evolutionary Computation [C].Anchorage AK,USA,1998:69-73.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部