期刊文献+

Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics 被引量:1

Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
下载PDF
导出
摘要 We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states. We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期30-33,共4页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grnat No.11175113) the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
关键词 generating function two-variable Hermite polynomials Hermite polynomial method technique of integral within an ordered product of operators generating function,two-variable Hermite polynomials,Hermite polynomial method,technique of integral within an ordered product of operators
  • 相关文献

参考文献13

  • 1Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301.
  • 2Fan H Y and Jiang T F 2007 Mod. Phys. Lett. B 21 475.
  • 3Erdelyi A 1953 Higher Transcendental Functions (The Bateman Manuscript Project).
  • 4Yuan H C, Li H M and Xu X F 2013 Chin. Phys. B 22 060301.
  • 5Fan H Y, Zhan D H, Yu W J and Zhou J 2012 Acta Phys. Sin. 61 110302 (in Chinese).
  • 6Yang Y and Fan H Y 2013 Chin. Phys. B 22 020303.
  • 7Fan H Y and Tang X B 2008 Devolopment of Basis of the Mathemati- cal Physics of Quantum Mechanics (Hefei: University of Science and Technology of China Press) p. 38.
  • 8Ozaktas H M and Mendlovic D 1993 Opt. Commun. 101 163.
  • 9Fan H Y and Li X C 2012Acta Phys. Sin. 61 200301 (in Chinese).
  • 10Fan H Y 2012 Representation and Transformation Theory in Quantum Mechanics: Dirac's Symbolic Method, 2nd edn. (Hefei: University of Science and Technology Press) p. 269.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部