摘要
神经网络具有内在大规模并行运算和快速收敛特性 ,它在最优化技术上的运用近年来受到广泛的重视。本文提出一个新的求解一般约束非线性规划的的神经网络模型 ,它具有全局收敛性和广泛的适用性 ,是求解一般非线性规划问题的新工具。理论分析和模拟计算均表明了模型的有效性。
Artificiel neural networks possess inherent massively parallel processing and fast convergence. Much attention has been paid to its application to optimiation. The present paper proposes a novel neural network model for general constrained nonlinear programming. This model is globally convergent and can be used for different kinds of nonlinear programming problems. It is a new approach to general nonlinear programming. Theoretical anaysis and simulation both demonstrate the efficiency of the model.
出处
《运筹与管理》
CSCD
2001年第3期51-54,共4页
Operations Research and Management Science