期刊文献+

大数据:概念、技术及应用研究综述 被引量:234

Big Data:Conceptions,key technologies and application
下载PDF
导出
摘要 随着物联网、云计算、移动互联网的迅猛发展,大数据(Big Data)吸引了越来越多的关注,正成为信息社会的重要财富,同时也给数据的处理与管理带来了巨大挑战.首先从大数据概念入手,阐述了大数据的来源、主要挑战、关键技术、大数据处理工具和应用实例等,并对比了大数据与云计算、物联网、移动互联网等技术之间关系,然后剖析了大数据核心技术、大数据企业解决方案,讨论了目前大数据应用实例,最后归纳总结了大数据发展趋势.旨在为了解大数据当前发展状况、关键技术以及科学地进行大数据分析与处理提供参考. With the rapid development of internet of things,cloud computing,and mobile internet,the rise of Big Data has attracted more and more concern,which brings not only great benefits but also crucial challenges on how to manage and utilize Big Data better. This paper describes the main aspects of Big Data including definition, data sources,key technologies, data processing tools and applications, discusses the relationship between Big Data and cloud computing,internet of things and mobile internet technology.Furthermore,the paper analyzes the core technol-ogies of Big Data,Big Data solutions from industrial circles,and discusses the application of Big Data. Finally,the general development trend on Big Data is summarized.The review on Big Data is helpful to understand the current development status of Big Data,and provides references to scientifically utilize key technologies of Big Data.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2014年第5期405-419,共15页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 计算机软件新技术国家重点实验室(南京大学)开放课题(KFKT2014B21) 2014年全国及江苏省大学生实践创新训练计划(201410300026) 江苏高校优势学科建设工程资助项目
关键词 大数据 云计算 大数据处理 分布 式系统 NOSQL Big Data cloud computing Big Data processing distributed system NoSQL
  • 相关文献

参考文献49

  • 1Nature.Big Data [ EB/OL ]. [ 2014-08-23]. http ://www. nature, com/ news/ specials/bigdata/ index.htm.
  • 2Science.Special online collection: Dealing with data[ EB/ OL]. ( 2011-02-11 ). [ 2014-08-23 ]. http: //www. sei- encemag, org/site/special/dat a/.
  • 3Big Data across the federal government. [ EB/OL ].[ 2014-08-23 1. http: // www. whitehouse, gov/sites/ default/files/microsites/ostp/big_ data_ fact_ sheet_ final_ 1.pdf.
  • 4Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with Big Data [ R ].Cyber Center Technical Reports, 2012.
  • 5李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657. 被引量:1606
  • 6Manyika J, Chui M, Brown B, et al. Big Data: The next frontier for innovation, competition, and productivity[ EB/ OL]. [ 2014-09-02 ]. http: // www. mckinsey, corn/ insights/business technology/big_ data_ the_ next frontier for innovation.
  • 7冯登国,张敏,李昊.大数据安全与隐私保护[J].计算机学报,2014,37(1):246-258. 被引量:730
  • 8孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. 被引量:2393
  • 9李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.
  • 10中国计算机学会大数据专家委员会.中国大数据技术与产业发展白皮书[R].2013.

二级参考文献194

  • 1姜传贤,孙星明,易叶青,杨恒伏.基于JADE算法的数据库公开水印算法的研究[J].系统仿真学报,2006,18(7):1781-1784. 被引量:9
  • 2Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 3Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 4Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 5Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 6Big Data. Nature, 2008, 455(7 209): 1-136.
  • 7Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 8Complexity. Nature Physics, 2012, 8( 1 ).
  • 9Big Data. ERCIM News, 2012, (89).
  • 10David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.

共引文献4467

同被引文献1813

引证文献234

二级引证文献1955

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部