期刊文献+

马来二腈基二硫烯镍(Ⅱ)配合物展现了介电反常和弛豫(英文)

A Bis(maleonitriledithiolato)nickelate Ion-Pair Compound Exhibiting Dielectric Anomaly and Relaxation
下载PDF
导出
摘要 合成并用X-射线单晶衍射表征了一个离子对化合物1,7-bis(1-methylimidazolium)heptane bis(maleonitriodithiolato)nickelate(1)的结构。沿着晶体学c轴方向,化合物1中的阴、阳离子分别排列形成波浪形的链。变温介电性质研究表明,化合物1在90℃左右展现了介电态转变。我们将此转变归于化合物1中平衡阳离子的有序到无序转变。在低频区,化合物1出现了明显的介电弛豫过程,这与阳离子偶极运动有关。此外,DSC研究表明,在第二个升温过程中,化合物1在66℃和130℃左右出现两步冷结晶。此种冷结晶现象在小分子化合物中很罕见,这与化合物1的较大粘度以及测试过程中的较快降温速率有关。 An ion-pair compound, 1,7-bis(1-methylimidazolium)heptane bis(maleonitriodithiolato)nickelate (1), was synthesized and single crystal structurally characterized. The bis (maleonitriodithiolato)nickelate anions and dication formed the wave-shape anion chain along c-axis direction, respectively. 1 undergoes a tunable transition at about 90 ℃ between high and low dielectric states at variable temperature, which probably arises from the order-to-disorder transformation of alkyl chains. The dielectric relaxation process in low-frequency region, attributed to the orientation polarization of the molecules dipoles, was observed and discussed. Furthermore, 1 exhibits cold crystallization around 66 ℃ and 130 ℃ during the second heating scan, and originated from fast cooling rate and the large viscosity. Such study provides a possible strategy to explore switchable dielectric material. CCDC: 1015809.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2014年第12期2872-2878,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.21201103,21301093)资助项目
关键词 金属二硫烯配合物 介电反常 介电弛豫 晶体结构 Metal-bis,dithiolene complex dielectric anomaly dielectric relaxation crystal structure
  • 相关文献

参考文献34

  • 1Simon P,Gogotsi Y.Nat.Mater.,2008,7:845-854.
  • 2Juarez-Perez E J,Sanchez R S,Badia L,et al.J.Phys.Chem.Lett.,2014,5:2390-2394.
  • 3Shikata T,Sugimoto N.J.Phys.Chem.B,2,012,116:12605-12613.
  • 4Volksen W,Miller R D,Dubois G.Chem.Rev.,2010,110:56-110.
  • 5He F K,Yuan C Y,Li K,et al.RSC Adv.,2013,3:23128-23132.
  • 6Usman M,Lee C H,Hung D S.et al.J.Mater.Chem.C,2014,2:3762-3768.
  • 7Horiuchi S,Ishii F,Kumai R,et al.Nat.Mater.,2005,4:163-166.
  • 8Zagorodniy K,Seifert G,Hermann H,et al.Apply.Phys.Left.,2010,97:251905-251907.
  • 9Fu D W,Cai H L,Liu Y M,et al.Science,2013,339:425-428.
  • 10Fu D W,Zhang W,Cai H L,et al.Adv.Mater.,2011,23:5658-5662.

二级参考文献47

  • 1Vanderah T A. Science,2002,298:1182-1184.
  • 2Lee H N, Christen H M, Christen M F, et al. Nature, 2005,433:395-399.
  • 3Mohamed M B, Wang H, Fuess H, J. Phys. D: Appl. Phys.2010,43:455409(7 pages).
  • 4Ye H Y, Fu D W, Zhang Y, et al. J. Am. Chem. Soc. 2009,131:42-43.
  • 5Fu D W, Song Y M, Wang G X, et al. J. Am. Chem. Soc.,2007,129:5346-5347.
  • 6Hou J G,Qu Y F, Vaish R H, et al. J. Am. Ceram. Soc.2010,93:1414-1421.
  • 7Homes C C, Vogt T, Shapiro S M,et al. Science, 2001,293:673-676.
  • 8Hughes H, Allix M M B, Bridges C A, et al. J. Am. Chem.Soc. 2005,27:13790-13791.
  • 9Shukla A K, Agrawal V K,Das I M L, et al. Phase Transit.2006,79:875-887.
  • 10Subramanian M A, Li D, Duan N, et al. Solid State Chem.,2000,151:323-325.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部