期刊文献+

道路网络中基于方向关系约束的CKNN查询 被引量:4

CKNN Query Based on Constraint of Directional Relation in Road Network
下载PDF
导出
摘要 针对位置服务应用中,基于道路网络的移动对象连续K最近邻( CKNN )查询实时响应速度慢的问题,提出基于方向关系约束的移动对象CKNN查询算法CDR-CKNN。采用锥形模型建立方向关系表示模型,将查询中的方向关系谓词转化为开放图形,作为K最近邻查询的约束条件,快速过滤与查询结果无关的道路边,从而避免查找最近邻对象时对道路网的盲目扩展,缩短查找K最近邻对象的时间。实验结果表明,当道路网络规模增加时, CDR-CKNN算法查询性能比IMA/GMA算法提高2倍~3.3倍,其性能受兴趣点对象分布密度影响较小;采用八方向锥形模型比四方向锥形模型的算法查询效率提高1.5倍~3倍。 Aiming at the problem that the real-time response of Continuous K Nearest Neighbors( CKNN) query in road networks is slow in location based services,this paper proposes a CKNN query based on constraint of directional relation, named CDR-CKNN. The algorithm takes the cone-based model as directional relation model, converts the directional relation predicate into open shape which is the constraint condition of K Nearest Neighbor( KNN) query,and pruns the irrelevant road network edges with query result. It avoids blind network expansion,and decreases the time of finding out KNN. Experimental results show that CDR-CKNN algorithm has better query performance than classical IMA/GMA algorithm when road network becomes larger, the performance is increased by 2 ~3. 3 times, moreover, distribution density of Points of Interest ( POI ) has fewer influence on CDR-CKNN than IMA/GMA. Simultaneously, the query efficiency based on eight-direction cone model is increased by 1. 5~3 times than four-direction cone model.
出处 《计算机工程》 CAS CSCD 2014年第12期50-56,共7页 Computer Engineering
基金 中央高校基本科研业务费专项基金资助项目(DL12AB02) 国家"863"计划基金资助项目(2012AA102003-2) 国家林业局公益性行业科研专项基金资助项目(201104037)
关键词 方向关系模型 方向关系谓词 道路网络 连续K最近邻查询 开放图形 锥形模型 directional relation model directional relation predicate road network Continuous K Nearest Neighbors ( CKNN) query open shape cone model
  • 相关文献

参考文献12

  • 1Hyeong-Il Kim,Jae-Woo Chang.k-Nearest Neighbor Query Processing Algorithms for a Query Region in Road Networks[J].Journal of Computer Science & Technology,2013,28(4):585-596. 被引量:7
  • 2Mouratidis K,Yiu Man-Lung,Papadias D.Continuous Nearest Neighbor Monitoring in Road Networks[C]//Proceedings of the32nd International Conference on Very Large Data Bases.Seoul,Korea:ACM Press,2005:43-54.
  • 3Wang Haojun,Zimmermann R.Location Based Query Processing on Moving Objects in Road Networks[C]//Proceedings of the16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems.Vienna,Austria:[s.n.],2007:143-158.
  • 4Demiryurek U,Banaei K F,Shahabi C.Efficient Continuous Nearest Neighbor Query in Spatial Networks Using Euclidean Restriction[C]//Proceedings of International Symposium on Spatial and Temporal Database.Aalborg,Denmark:[s.n.],2009:25-43.
  • 5廖巍,张琪,吴晓平,钟志农.道路网络环境下的连续k近邻查询处理研究[J].小型微型计算机系统,2010,31(4):666-671. 被引量:3
  • 6赵亮,景宁,陈荦,廖巍,钟志农.面向多核多线程的移动对象连续K近邻查询[J].软件学报,2011,22(8):1805-1815. 被引量:11
  • 7Shekhar S,Liu Xuan.Direction as a Spatial Object:A Summary of Results[C]//Proceedings of the6th International Symposium on Advance in Geographic Information Systems.[S.l.]:ACM Press,1998:69-75.
  • 8石静,刘永山.基于开放区域的定量方向关系查询技术[J].计算机工程,2007,33(22):89-91. 被引量:2
  • 9郝晓红,张丽平,李松.三维空间中3DR44方向关系表示模型[J].计算机工程,2011,37(1):75-77. 被引量:10
  • 10de Almeida V T,Güting R H.Using Dijkstra’s Algorithm to Incrementally Find the k-nearest Neighbors in Spatial Network Databases[C]//Proceedings of2006ACM Symposium on Applied Computing.Dijon,France:ACM Press,2006:58-62.

二级参考文献54

  • 1刘新,刘文宝.3D-GIS中方向关系描述及其推理[J].测绘科学,2007,32(3):23-25. 被引量:13
  • 2Ouri Wolfson.Moving Objects Information Management:The database challenge[C].In:Proceedings of the 5th International Workshop on Next Generation Information Technologies and Systems,London,2002,75-89.
  • 3Papadias D,Zhang J,Mamoulis N,et al.Query processing in spatial network databases[C].In:Proceedings of 29th Intl.Conf.on Very Large Data Bases,VLDB,2003,802-813.
  • 4Kolahdouzan M R,Shahabi C.Voronoi-based k nearest neighbor search for spatial network databases[C].In:Proceedings of 30th Intl.Conf.on Very Large Data Bases VLDB,2004,840-851.
  • 5Cho H J,Chung C W.An efficient and scalable approach to CNN queries in a road network[C].In Proceedings of the Intl.Conf.on Very Large Data Bases,2005,865-876.
  • 6Chon H D,Agrawal D,Abbadi A E.Range and kNN query processing for moving objects in grid model[J].MONET,2003,8(4):401-412.
  • 7Mohamed F.Mokbel,Xiaopeng Xiong,and Walid G.Aref.SINA:Scalable Incremental Processing of Continuous Queries in Spatiotemporal Databases[C].Proceedings of the Intl.Conf.on Management of Data,2004,623-634.
  • 8Yu Xiao-hui,Ken Q.Pu,Nick koudas.mointoring k Nearest neighbour queries over moving objects[C].Proceedings of the Intl.Conf.on Data Engineering,2005,631-642.
  • 9Xiong Xiao-peng,Mohamed F.Mokbel and Walid G.Aref.SEA-CNN:scalable processing of continuous K-Nearest neighbor queries in spatio-temporal databases[C].Proceedings of the Intl.Conf.on Data Engineering,2005,643-654.
  • 10Kyriakos Mouratidis,Marios Hadjieleftheriou,and Dimitris Papadias.Conceptual partitioning:an efficient method for continuous nearest neighbor monitoring[C].Proceedings of the Intl.Conf.on Management of Data,2005,634-645.

共引文献27

同被引文献30

  • 1孙海滨,李文辉.基于结合空间拓扑和方向关系信息的空间推理[J].计算机研究与发展,2006,43(2):253-259. 被引量:9
  • 2Peng Huaijun,Qin Yong,Yang Yanfang,et al.Study on Individual Traffic Police On-duty Behavior Analysis Method with Time Series Scheduling[J].Mathematical Problems in Engineering,2015(1):1-7.
  • 3Chen Yong,Zhou Wenlin.User Behavior Analysis Based on Gn Interface of GPRS Network[J].Advanced Materials Research,2013,765-767:1205-1209.
  • 4Sommer C,German R,Dressler F.Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis[J].IEEE Transactions on Mobile Computing,2010,10(1):3-15.
  • 5Wu Linlin,Wang Yang,Ge Huimin.Analysis and Prediction of Inter-city Traffic Mode Choice Behavior Based on Disaggregate Methods[J].Advances in Information Sciences&Service Sciences,2012,4(10):408-415.
  • 6Pan Gang,Qi Guande,Zhang Wangsheng,et al.Trace Analysis and Mining for Smart Cities:Issues,Methods,and Applications[J].IEEE Communications Magazine,2013,51(6):120-126.
  • 7Li S H,Kao Y C,Zhang Z C,et al.A Network Behaviorbased Botnet Detection Mechanism Using PSO and Kmeans[J].ACM Transactions on Management Information Systems,2015,6(1):1-30.
  • 8陈娟,刘大有,贾海洋,张长海.基于MBR的拓扑、方位、尺寸结合的定性空间推理[J].计算机研究与发展,2010,47(3):426-433. 被引量:6
  • 9吴文静,隽志才,罗清玉.信息作用下出行者短期决策行为分析[J].交通运输系统工程与信息,2010,10(2):100-105. 被引量:6
  • 10董轶群,刘大有,王芳,王生生,吕帅.一种基于MBR的不确定区域间方向关系建模方法[J].电子学报,2011,39(2):329-335. 被引量:7

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部