期刊文献+

迁移学习研究进展 被引量:471

Survey on Transfer Learning Research
下载PDF
导出
摘要 近年来,迁移学习已经引起了广泛的关注和研究.迁移学习是运用已存有的知识对不同但相关领域问题进行求解的一种新的机器学习方法.它放宽了传统机器学习中的两个基本假设:(1)用于学习的训练样本与新的测试样本满足独立同分布的条件;(2)必须有足够可利用的训练样本才能学习得到一个好的分类模型.目的是迁移已有的知识来解决目标领域中仅有少量有标签样本数据甚至没有的学习问题.对迁移学习算法的研究以及相关理论研究的进展进行了综述,并介绍了在该领域所做的研究工作,特别是利用生成模型在概念层面建立迁移学习模型.最后介绍了迁移学习在文本分类、协同过滤等方面的应用工作,并指出了迁移学习下一步可能的研究方向. In recent years, transfer learning has provoked vast amount of attention and research. Transfer learning is a new machine learning method that applies the knowledge from related but different domains to target domains. It relaxes the two basic assumptions in traditional machine learning: (1) the training (also referred as source domain) and test data (also referred target domain) follow the independent and identically distributed (i.i.d.) condition; (2) there are enough labeled samples to learn a good classification model, aiming to solve the problems that there are few or even not any labeled data in target domains. This paper surveys the research progress of transfer learning and introduces its own works, especially the ones in building transfer learning models by applying generative model on the concept level. Finally, the paper introduces the applications of transfer learning, such as text classification and collaborative filtering, and further suggests the future research direction of transfer learning.
出处 《软件学报》 EI CSCD 北大核心 2015年第1期26-39,共14页 Journal of Software
基金 国家自然科学基金(61473273 61473274 61175052 61203297) 国家高技术研究发展计划(863)(2014AA015105 2013AA01A606 2012AA011003)
关键词 迁移学习 相关领域 独立同分布 生成模型 概念学习 transfer learning related domain independent and identical distribution generative model concept learning
  • 相关文献

参考文献85

  • 1Lee SI,Chatalbashev V,Vickrey D,Koller D.Learning a meta-level prior for feature relevance from multiple related tasks.In:Proc.ofthe 24th Int’l Conf.on Machine Learning.New York:ACM,2007.489-496.[doi:10.1145/1273496.1273558].
  • 2Xie SH,Fan W,Peng J,Verscheure 0,Ren JT.Latent space domain transfer between high dimensional overlapping distributions.In:Proc.ofthe ACM Conf.on World Wide Web.New York:ACM Press,2009.91-100.[doi:10.1145/1526709.1526723].
  • 3Long MS,Wang JM,Ding GG,Cheng W,Zhang X,Wang W.Dual transfer learning.In:Proc.of the SDM.California:SIAM,2012.540-551.
  • 4Wang H,Huang H,Nie FP,Ding C.Cross-Language Web page classification via dual knowledge transfer using nonnegative matrix tri-factorization.In:Proc.of the 34th Int’l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM,2011.933-942.[doi:10.1145/2009916.2010041].
  • 5Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 6Mansour Y,Mohri M,Rostamizadeh A.Domain adaptation:Learning bounds and algorithms.In:Proc.of the 22nd Annual Conf.on Learning Theory.San Francisco:Morgan Kaufmann Publishers,2009.
  • 7Dai WY,Chen YQ,Xue GR,Yang Q,Yu Y.Translated learning:Transfer learning across different feature spaces.In:Koller D,Schuurmans D,Bengio Y,Bottou L,eds.Proc.of the Advances in Neural Information Processing Systems 20.Cambridge:MIT Press,2008.353-360.
  • 8Mann GS,McCallum A.Simple,robust,scalable semi-supervised learning via expectation regularization.In:Proc.of the 24th Int’l Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2007.593-600.[doi:10.1145/1273496.1273571].
  • 9Zheng VW,Pan SJ,Yang Q,Pan JJ.Transferring multi-device localization models using latent multi-task learning.In:Fox D,Gomes CP,eds.Proc.of the AAAI.AAAI Press,2008.1427-1432.
  • 10Fang M,Yin J,Zhu XQ.Transfer learning across networks for collective classification.In:Proc.of the 2013 IEEE 13th Int’l Conf.on Data Mining.2013.161-170.[doi:10.1109/ICDM.2013.116].

二级参考文献21

  • 1Wu P C, Dietterich T G. Improving SVM Accuracy by Training on Auxiliary Data Sources. In: Brodley C E, eds. Proceeding of 21th International Conference on Machine Learning, 2004 Jul 4-8, Banff, Alberta, Canada. ACM, 2004. 871-878
  • 2Mahmud M M H, Ray S, et al. Transfer learning using kolmogorov complexity: Basic theory and empirical evaluations. Technical Report, UIUC-DCS-R-200%2875, Department of Computer Science, University of Illinois at Urbana-Champaign. 2007
  • 3Ben-David S, Blitzer J, Crammer K, et al, Analysis of representations for domain adaptation. In: Koller D, Singer Y, Platt J, et al, eds. Proceeding of Advances in Neural Information Processing Systems 20, MIT Press, Cambridge, MA, 2007, (20): 137- 144
  • 4Dai W Y, Xue G R, Yang Q, et al. Transferring naive bayes classifiers for text classification. In: John C, Peyman F, Simon P, et al, eds. Proceeding of 22nd Conference on Artificial Intelligence, 2007 Jul 22-26, Vancouver, British Columbia. AAAI Press, 2007. 540-545
  • 5Samarth S, Sylvian R. Cross domain knowledge transfer using structured representations. In: Proceeding of 21nd Conference on Artificial Intelligence, 2006 Jul 16 22, Boston, Massachusetts. AAAI Press, 2006
  • 6Ling X, Dai W Y, Xue G R, et al. Spectral domain-transfer learning. In: Li Y, Liu B, Sunita S, et al, eds. Proceeding of 14th ACM International Conference on Knowledge Discovery and Data Mining, 2008, Aug 24 27, Las Vegas, Nevada. ACM, 2008. 488-496
  • 7Mahmud M M H. On Universal Transfer Learning. In: Rocco M H, Servedio R A, Takimoto E, ct al, eds. Proceeding of 18th International Conference on Algorithmic Learning Theory, 2007, Oct 1-4, Sendal, Japan. LNCS, 2007. 135-149
  • 8Belkin M, Niyogi P, Sindhwani V, et al. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach I.earn Res, 2006, 7:2399-2434
  • 9Grandvalet Y, Bengio Y. Semi-supervised learning by entropy minimization. In: Proceeding of 19th Conference on Neural Information Processing Systems, 2005 Dec 5-8, Vancouver, British Columbia. MIT Press, 2005. 529-536
  • 10Mann G S, McCallum A. Simple, Robust, Scalable Semi-supervised Learning via Expectation Regularization. In: Ghahramani Z B, eds. Proceeding of 24th International Conference on Machine Learning, 2007 Jun 20-24, Corvalis, Oregon. ACM, 2007. 593-600

共引文献4

同被引文献3313

引证文献471

二级引证文献3815

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部