期刊文献+

基于混合生物地理学算法的非线性系统辨识 被引量:6

Identification of Nonlinear System Based on Hybrid Biogeography-Based Optimization Algorithm
下载PDF
导出
摘要 针对非线性系统辨识问题,由于传统辨识方法存在精度低收敛慢等缺点,提出了一种采用混合生物地理学算法的非线性系统辨识方法。混合算法是在对生物地理学算法进行改进的基础上与差分进化算法相结合,通过适当地融合具有不同搜索能力的优化算法,使得混合算法的开采能力和探索能力得到更好的增强和平衡。通过对Wiener模型进行参数辨识,并与生物地理学算法和差分进化算法进行比较,仿真结果表明,利用混合生物地理学算法能够提高辨识精度并获得良好的辨识效果,验证了混合算法的有效性和可行性。 A Hybrid Algorithm (IDEBBO) is proposed based on Biogeography-Based Optimization for nonlinear identification problem. The hybrid algorithm is Improved Biogeography-Based Optimization combined with Differential Evolution Algorithm. By suitably fusing several optimization methods with different searching mechanisms, the exploration and exploitation abilities of the hybrid algorithm can be enhanced and well balanced. According to parameters identification of the Wiener model and compared with Biogeography-Based Optimization (BBO) and Differential Evolution Algorithm (DE), the simulation results show that using IDEBBO algorithm can improve the identification accuracy and get good recognition results, which verifies the effectiveness and feasibility of the IDEBBO algorithm.
出处 《计算机仿真》 CSCD 北大核心 2015年第1期416-419,457,共5页 Computer Simulation
基金 自治区研究生科研创新项目资助(XJGRI2014039)
关键词 生物地理学优化算法 混合算法 参数估计 非线性模型 Biogeography-based Optimization Hybrid algorithm Parameter estimation Nonlinear model
  • 相关文献

参考文献8

  • 1Dan Simon. Biogeography-based optimization[J]. IEEE Transac- tions on Evolutionary Computation, 2008,6(12) : 702-713.
  • 2龚文引.差分演化算法的改进及其在聚类分析中的应用研究[M].武汉:中国地质大学,2010.
  • 3David Westwick, Michel Verhaegen. Identifying MIMO Wiener systems using subspace mode identification methods [ J ]. Signal Processing 52, 1996:235-258.
  • 4张艳,李少远,王笑波,周坚刚.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991-995. 被引量:15
  • 5MaHaiping, D Simon, Fei Minrui, Xie Zhikun. Variations of bio- geography-based opti- mization and Markov analysis [ J ]. Infor- mation Sciences, 220, 2013:492 - 506.
  • 6吴斌,林锦国,崔志勇.生物地理学优化算法中迁移算子的比较[J].系统工程与电子技术,2011,30(11):2231-2236.
  • 7高凯歌,郑向伟.基于中值迁移和柯西变异的生物地理学算法[J].中国电机工程学报,2012,32(31):150-158.
  • 8熊伟丽,许文强,徐保国.基于差分进化算法的Wiener模型辨识[J].控制工程,2012,19(5):900-904. 被引量:7

二级参考文献34

  • 1刘明广.差异演化算法及其改进[J].系统工程,2005,23(2):108-111. 被引量:38
  • 2张艳,李少远,王笑波,周坚刚.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991-995. 被引量:15
  • 3JACOBS O L R. Gaussian approximation in recursive of multiple state of nonlinear Wiener systems[J]. Automatica, 1988, 24(2): 234 -247.
  • 4HATANAKA T, UOSAKI K, KOGA M. Evolutionary computation approach to Wiener model identification[C]//Proc of IEEE Congresson Evolutionary Computation. [S.l.]: [s.n.], 2002:914 - 919.
  • 5KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proc of IEEE lnt Conf on Neutral Networks. [S.l.]: [s.n.], 1995:1942- 1948.
  • 6ZHENG Y L, MA L H, ZHANG L Y, et al. On the convergence analysis and parameter selection in particle swarm optimization[C]//Proc of the Second lnt Conf on Machine Learning and Cybernetics, [S.l.]:[s.n.], 2003:1802 - 1807.
  • 7YOSHITANI N, HASEGAWA A. Model-based control of strip temperature for the heating furnace in continuous annealing[J]. IEEE Trans on Control Systems Technology, 1998, 6(2): 146 - 156.
  • 8Hatanaka T, Uosaki K, Koga M. Evolutionary computation approach to Wiener model identification [ C]. Proc of IEEE Congress on Evolutionary Computation, 2002.
  • 9Stom R, Price K. Differential evolution一A simple and efficient heuristic for global optimization over continuous spaces [ J]. Journal of Global Optimization, 1997,11(4) :341-359.
  • 10Stom R, Price K. Differential evolution-A simple and efficient a-daptive scheme for global optimization over continuous spaces [ J]. Berkeley : University of California 1995.

共引文献21

同被引文献49

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部