期刊文献+

具有随机观测周期的经典风险模型中最优分红和注资策略(英文) 被引量:3

The Optimal Dividend and Capital Injection Strategies in the Classical Risk Model with Randomized Observation Periods
下载PDF
导出
摘要 本文考虑具有随机观测周期的经典风险模型中最优分红和注资策略.假设破产是被禁止的.目的是最大化分红折现总额减去资金注射折现总额的期望值.得到了HJB方程并证明了验证性定理.并在指数理赔假设下得到了最优控制策略和最优值函数. This paper considers the optimal dividend and capital injection strategies in the classical risk model with randomized observation periods. Assume that ruin is prohibited. We aim to maximise the expected discounted dividend payments minus the expected penalised discounted capital injections. We derive the associated Hamilton-Jacobi-Bellman (HJB) equation and prove the verification theorem. The optimal control strategy and the optimal value function are obtained under the assumption that the claim sizes are exponentially distributed.
出处 《应用概率统计》 CSCD 北大核心 2014年第6期661-672,共12页 Chinese Journal of Applied Probability and Statistics
基金 supported by the National Natural Science Foundation of China(11201006)
关键词 分红 资金注射 HJB方程 Dividend, capital injection, Hamilton-Jacobi-Bellman equation.
  • 相关文献

参考文献26

  • 1Avanzi, B., Strategies for dividend distribution: a review, North American Actuarial Journal, 13(2) (2009), 217-251.
  • 2Avanzi, B., Cheung, E.C.K., Wong, B. and Woo, J.K., On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52(1) (2013), 98-113.
  • 3Avanzi, B., Tu, V. and Wong, B., On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55(2014), 210-224.
  • 4Albrecher, H., Cheung, E.C.K. and Thonhauser, S., Randomized observation periods for the com- pound Poisson risk model: dividends, ASTIN Bulletin, 41(2)(2011a), 645-672.
  • 5Albrecher, H., Cheung, E.C.K. and Thonhauser, S., Randomized observation periods for the com- pound Poisson risk model: the discounted penalty function, Scandinavian Actuarial Journal, 2013(6) (2013), 424-452.
  • 6Albrecher, H., Gerber, H.U. and Shiu, E.S.W., The optimal dividend barrier in the Gamma-Omega model, European Actuarial Journal, 1(1)(2011b), 43-55.
  • 7Albrecher, H., B~uerle, N. and Thonhauser, S., Optimal dividend-payout in random discrete time, Statistics and Risk Modeling, 28(3)(2011c), 251-276.
  • 8Albrecher, H. and Thonhauser, S., Optimality results for dividend problems in insurance, RACSAM - Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A: Matematicas, 103(2) (2009), 295-320.
  • 9Bai, L. and Paulsen, J., Optimal dividend policies with transaction costs for a class of diffusion processes, SIAM Journal on Control and Optimization, 48(8)(2010), 4987-5008.
  • 10Bai, L. and Paulsen, J., On non-trivial barrier solutions of the dividend problem for a diffusion under constant and proportional transaction costs, Stochastic Processes and Their Applications, 122(12) (2012), 4005-4027.

同被引文献2

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部