期刊文献+

一个特殊5-阶图与圈C_n的联图的交叉数 被引量:2

The Crossing Number of Join Products of a Special 5-Vertex Graph with C_n
下载PDF
导出
摘要 联图G∨H表示将G中每个点与H中的每个点连边得到的图.在Klecˇ给出所有3阶图和4阶图与圈Cn的联图的交叉数的基础上,确定了一个5-阶图与圈Cn的联图的交叉数. A join graph, denoted by G∨H, is illustrated by connecting each vertex of a graph G to each vertex of a graph H. Based on the crossing number of join products of all 3-vertex and 4-vertex graphs with cycle Cn by Klesc, we obtained the crossing number of join products of a special 5-vertex graph with cycle Cn.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2015年第1期81-85,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(11371133) 湖南省自然科学基金资助项目(12JJ5001)
关键词 画法 交叉数 联图 drawing crossing number join graph cycle
  • 相关文献

参考文献3

二级参考文献40

  • 1GROSS J L, TUCKER T W. Topological Graph Theory [M]. John Wiley & Sons, Inc., New York, 1987.
  • 2HAFLARY F. Graph Theory [M]. Addieon-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif-London, 1969.
  • 3KLESC M. The crossing numbers of products of paths and stars with 4-vertex graphs [J]. J. Graph Theory, 1994, 18(6): 605--614.
  • 4KLESC M. The crossing numbers of certain Cartesian products [J]. Discuss. Math. Graph Theory, 1995, 15(1): 5-10.
  • 5KLESC M. The crossing number of K2,3 × Pn and K2,3 × St, [J]. Tatra Mt. Math. Publ., 1996, 9: 51-56.
  • 6KLESC M. The crossing number of K5 × Pn [J]. Tatra Mt. Math. Publ., 1999, 18: 63--68.
  • 7KLESC M. The crossing numbers of Cartesian products of paths with 5-vertex graphs [J]. Discrete Math., 2001, 233(1-3): 353-359.
  • 8KLESC M. On the crossing numbers of Cartesian products of stars and paths or cycles [J]. Math. Slovaca, 1991, 41(2): 113-120.
  • 9YU Ping, HUANG Yuanqiu. The crossing numbers of Pm × Wn [J]. J. Nat. Sci. Human Norm. Univ., 2005, 28(1): 14-16. (in Chinese)
  • 10BOKAL D. On the crossing numbers of Cartesian products with paths [J]. J. C, ombin. Theory Ser. B, 2007, 97(3): 381-384.

共引文献12

同被引文献13

  • 1OLLMANN L T. On the book thicknesses of various graphs [ C]//Proc. 4th southeastern conference on combinatorics, Graphtheory and computing, Congressus Numerantium, Winnipeg: Utilitas Mathematics Publ. Inc.,1973. VIII 459.
  • 2CHUNG F R K, LEIGHTON F T,ROSENBERG A L. Embedding graph in books: a layout problem with applications to VLSI.design [J]. SIAM J Alg Disc Math, 1987,8( 1) :33-58.
  • 3SHAHROKHI F, SHI W. On crossing sets, disjiont sets and pagenumber [J]. J Algor, 2000,34(1) :40-53.
  • 4BEMHART F, KAINEN B. The book thickness of a graph [ J]. J Comb Theory B, 1979,27(3) :320-331.
  • 5BONDY J A, MURTY U S R. Graph theory with application [ M]. Berlin:Springer, 2008.
  • 6HEATH L S,LEIGHTON F T,ROSENBERG A L. Compariting queues and stacks as mechanisms for laying out graphs [ J ].SIAM J Discrete Math, 1992,5(3) :398-412.
  • 7ROSENBERG A L. The diogenes approach to testable fault-tolerant arrays of processors [ J]. IEEE Trans Comput, 1983 ,32(10):902-910.
  • 8TARJAN R E. Sorting using networks of queues and stacks [J]. J Appl Comput Math, 1972,19(2) :341-346.
  • 9KAPPOOR N, RUSSELL M, STOJMENOVIC I,et aL A genetic algorithm for finding the pagenumber of interconnection net-works [J]. J Parallel Distr Com, 2002,62(2) :267-283.
  • 10YANNAKAKIS M. Embedding planar graph in four pages [J]. J Comput Syst Sci, 1989,38( 1 ) :36-37.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部