期刊文献+

一种基于梯度方向直方图的俯视行人的检测方法 被引量:9

Zenithal Pedestrian Detection Based on Histogram of Oriented Gradient
下载PDF
导出
摘要 目前已有很多关于行人检测方面的研究,这些研究基本建立在行人竖直站立或行走的平视图上,主要应用于视频监控和车载辅助驾驶等领域,但在实际应用中,有时需要从不同的视角检测行人.文中提出一种针对俯视行人检测方法,该方法将俯视行人头部的梯度方向直方图统计信息作为检测目标的特征.通过训练样本提取的特征向量在支持向量机中进行训练得到分类模型参数,然后提取检测样本的特征向量输入分类模型进行判别.与现有行人检测的梯度方向直方图算子相比,文中特征描述算子突出目标的区域与轮廓特征,在目标分块、特征计算和特征统计方法上均有变化.实验证明算法有效且处理速度明显提升. There are extensive researches on pedestrian detection, which mostly suppose visible humans observed in fiat view and are applied in video surveillance, driving assistance etc. However, sometimes pedestrian detection from another perspective should be considered in practice. In this paper, a histogram of oriented gradients (HOG) descriptor is introduced for the zenithal pedestrian head detection. The vectors extracted from training samples are trained in the support vector machine to get the classifier parameters, and then the vectors of test samples are input into the classifier to discriminate which targets are. Compared with the existing methods, the proposed descriptor highlights both the region and the contour of the object. Partitioning blocks are reformed, and the feature calculation and statistical method are changed adaptively to the task. The experimental results show that the proposed method is effective and can be applied to count pedestrians in vertical view with a faster processing speed.
作者 唐春晖
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第1期19-26,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61374197) 上海市教育委员会重点学科建设项目(No.J50505) 2015上海理工大学光电学院教师创新能力建设基金项目资助
关键词 客流计数 俯视行人检测 梯度方向直方图(HOG) Passenger Flow Counting, Zenithal Pedestrian Detection, Histogram of Oriented Gradient(HOG)
  • 相关文献

参考文献13

  • 1Enzweiler M, Gaw'ila D M. Monocular Pedeslrian Detection : Survey and Experiments. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (12): 2179-2195.
  • 2上海理工大学.长途客运超载监控系统:中国,ZL2006286220.2008-12-31.
  • 3Terada K, Yoshida D, Oe S, et al. A Method of Counting the Pass- ing People by Using the Stereo Images// Proc of the International Conference on Image Pr:essing. Kobe, Japan, 1999, II: 338-342.
  • 4于海滨,付伟,刘济林.视觉客流检测中的动态轮廓匹配方法[J].浙江大学学报(工学版),2008,42(3):412-417. 被引量:4
  • 5朱秋煜,唐利,郁铭,江毅凭.一种基于立体视觉的公交车客流计数方法[J].中国图象图形学报,2009,14(11):2391-2395. 被引量:10
  • 6Barmldiaran J, Murguia B, Boto F. Real-Time People CountingUsing Multiple Lines// Proc of the 9th International Workshop on Image Analysis for Multimedia Interactive Services. Klagenfurt, Austria, 2008:159-162.
  • 7Chen C H, Chang Y C, Chen T Y, et al. People Counting System for Getting in/out of a Bus Based on Video Processing//Proc of the 8th International Conference on Intelligent Systems Design and Applications. Kaohsiung, China, 2008, III: 565-569.
  • 8Anti6 B, Leti D, Dulibrk D, et al. K-means Based Segmentation for Real-Time Zenithal People Counting// Proc of the 16th IEEE International Conference on Image Processing. Cairo, Egypt, 2009 : 2565 -2568.
  • 9Chen T H, Chen T Y, Chen Z X. An Intelligent People-Flow Counting Method for Passing through a Gate // Proc of the IEEE Conference on Robotics, Automation and Mechatronics. Bangkok, Thailand, 2006 : 1-6.
  • 10于海滨,刘济林.应用于公交客流统计的机器视觉方法[J].中国图象图形学报,2008,13(4):716-722. 被引量:26

二级参考文献28

  • 1ZHANG Xiao-wei, SEXTON G. Automatic human head location for pedestrian counting[C]// Proceedings of Sixth International Conference on Image Processing and its Applications. Dublin: Institution of Electrical Engineers, 1997: 535-540.
  • 2LIN Sheng-fuu, CHEN Jaw-yeh, CHAO Hung-xin. Estimation of number of people in crowded scenes using perspective transformation[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2001, 31 (6): 645 - 654.
  • 3BEYMER D, Person counting using stereo[C]//Proceedings of Workshop on Human Motion. Austin: IEEE Computer Society, 2000: 127-133.
  • 4HUANG Xiao-yu, LI Li-yuan, SIM T, Stereo-based human head detection from crowd scenes[C]//Proceedings of International Conference on Image Processing. Singapore: IEEE Computer Society, 2004:1353 - 1356.
  • 5KROTOSKY S, CHENG S, TRIVEDI M. Real-time stereo-based head detection using size, shape and disparity constraints [C]//Proceedings of IEEE Symposium on Intelligent Vehicles. Las Vegas: IEEE Computer Society, 2005: 550-556.
  • 6LUO Rui-jiang, GUO Yan. Real-time stereo tracking of multiple moving heads [C]// Proceedings of IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. Vancouver: IEEE Computer Society, 2001: 55-60.
  • 7HOW P , YIP R K K. A dynamic programming approach for stereo line matching with structural information[C]//Proceedings of the 13th International Conference on Pattern Recognition. Vienna: IEEE Computer Society, 1996:791 - 794.
  • 8Bartolini F,Cappellini V, Meeoeei A. Counting people getting in and out of a bus by real-time image-sequence processing[J]. Image and Vision Computing, 1994,12( 1 ) :36 - 41.
  • 9Zhang Xiao-wei, Sexton G. Automatic human head location for pedestrian counting [ A ]. In: Proceedings of Sixth International Conference on Image Processing and its Applications [ C ] , Dublin, German, 1997:535 - 540.
  • 10Lin Sheng-fuu, Chen Jaw-yeh Chao Hung-Xin. Estimation of number of people in crowded scenes using perspective transformation [ J ]. IEEE Transactions on Systems, Man and Cybernetics (Part A) ,2001, 31 ( 6 ) :645 - 654.

共引文献36

同被引文献102

  • 1章炜.机器视觉技术发展及其工业应用[J].红外,2006,27(2):11-17. 被引量:117
  • 2马颂德 张正友.计算机视觉[M].北京:科学出版社,1998.72-80.
  • 3HARITAOGLU I, HARWOOD D, [)AV[S L S. W4: Who? When? Where? What? A real time system fir detecting and tracking people [C]//Prnc. 3rd lnt'l Conference on Face and Gesture Recogni- tion. Nara, Japan : Springer, 1998 :222-227.
  • 4COLLINS R T,LIPTION A L,KANADE T,et al. A system for video surveillance and monitoring [ R 1. Pittsburgh, USA: Robotics Institu- te, 2000.
  • 5KANG S,HWANG B W,LEE S W. Multiple people tracking based on temporal color feature[ J]. International Journal of Pattern Recog-nition and Artificial Intelligence ,2003,17 ( 6 ) :931-949.
  • 6ZHU Man,SUN Shuifa,HAN Shuheng,et al. Comparison of moving object detection algorithms [ M ]. [ S.l. ] : World Automation Con- gress ( WAC ), 2012.
  • 7FRADI H,DUGELAY J. Robust foreground segmentation using im- proved Gaussian Mixture Model and optical flow[ EB/OL]. [ 2015- 03-20 ]. http ://www. researchgate, net/publieafion/261054309_Ro- bust_foregrnund_segmentation using_impro,ed Gaussian_Mixture_ Model_and_optical_flow.
  • 8YIN Jianqin,HAN Yanbin, HOU Wendi,et al. Detection of the mo- bile object with camouflage color under dynamic background based on optical flow [ J ]. Procedia Engineering,2011 ( 15 ) :2201-2205.
  • 9ZHANG Ruolin,DING Jian. Object tracking and detecting based on adaptive background subtraction [ J ]. Procedia Engineering, 2012 (29) : 1351-1355.
  • 10YANG Jingjing,DAI Yaping. A modified method of vehicle extrac- tion based on background subtraction[ C]//Proc. 2012 IEEE Intet national Conference on Fuzzy Systems (FUZZ - IEEE ), 2012. Brisbane, QLD, New Zealand : IEEE Press ,2012 : 1-5.

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部