期刊文献+

基于鱼群算法的无线传感网簇内信号盲检测 被引量:1

Blind Detection for Signals within Cluster of Wireless Sensor Networks Based on Artificial Fish School Algorithm
下载PDF
导出
摘要 文中在无线传感网传输模型分簇的基础上,针对簇内信号盲检测降低误码率和提高收敛性问题,提出了一种基于人工鱼群算法的信号盲检测算法。该算法采用自下而上的设计,构造了人工鱼的基本模型以及其各行为的模型,不需要了解问题的特殊信息,只需要对问题解的优劣进行比较,用此模型解决无线传感网簇内盲信号检测的二次规划性能函数。仿真结果表明,算法具有全局收敛性好、收敛速度快、误码率低的优点,从而成功实现了簇内簇首传感器信号盲检测。 Based on model clustering in wireless sensor network transmission in this paper,in viewof the problem of cluster signal blind detection lowering bit error rate and improving convergence,a signal blind algorithm based on artificial fish school algorithm is proposed.The bottom- up design is used in the novel algorithm and the basic model of artificial fish and its various models of behavior are constructed. It doesn't need to knowthe problem 's special information and only to compare the advantage and disadvantage for the problem solution. The quadratic programming performance functions of inter- cluster signals is solved by the algorithm. Simulation results showthat the algorithm has the advantages of good global convergence,quick convergence speed,lowerror rate,thus successfully implementing blind detection of sensor signal within the cluster and in the cluster head.
出处 《计算机技术与发展》 2014年第12期16-19,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61302155) 南京邮电大学引进人才项目(NY212022)
关键词 无线传感网 鱼群算法 盲检测 簇内 wireless sensor networks fish school algorithm blind detection within the cluster
  • 相关文献

参考文献12

  • 1Li Xiaohua. Blind channel estimation and equalization in wireless sensor networks based on correlations among sensors [ J]. IEEE Transactions on Signal Processing,2005,53 (4) : 1511-1519.
  • 2Li Xiaohua. Blind channel identification and equalization in dense wireless sensor networks with distributed transmissions [ C ]//Proc of 2004 IEEE international conference on acous- tics, speech, and signal processing. Montreal, Quebec, Cana- da : IEEE, 2004.
  • 3Cui Shuguang,Goldsmith A J,Bahai A. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks [J ]. IEEE Journal on Selected Areas in Communications, 2004,22(6) : 1089-1098.
  • 4李晓磊,钱积新.人工鱼群算法:自下而上的寻优模式[C]//过程系统工程2001年会论文集.出版地不详:出版者不详,2002.
  • 5Jiang Mingyan, Wang Yong, Pfletschinger S, et al. Optimal multiuser detection with artificial fish swarm algorithm[ C l// Proceedings of international conference on intelligent compu- ting. [ s. 1. ]: [ s. n. ] ,2007 : 1084-1093.
  • 6廖灿星,张平,李行善,张岩.基于混合人工鱼群算法的传感器网络优化[J].北京航空航天大学学报,2010,36(3):373-377. 被引量:14
  • 7王蕊,刘国枝.基于鱼群优化算法的无线传感器网络部署[J].振动与冲击,2009,28(2):8-11. 被引量:16
  • 8周利民,杨科华,周攀.基于鱼群算法的无线传感网络覆盖优化策略[J].计算机应用研究,2010,27(6):2276-2279. 被引量:25
  • 9Jiang M Y, Yuan D F. Wavelet threshold optimization with arti- ficial fish swarm algorithm[ C ]//Proceedings of international conference on neural networks and brain. [ s. 1. ] : [ s. n. ], 2005:569-572.
  • 10Jiang M Y ,Mastorakis N E, Yuan D F, et al. Multi-threshold image segmentation with improved artificial fish swarm algo- rithm[ C]//Proeeedings of European computing conference. Is. 1. ]:Is. n. ] ,2007:35-38.

二级参考文献36

共引文献71

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部