期刊文献+

自适应Tent混沌搜索的人工蜂群算法 被引量:41

Artificial bee colony algorithm based on self-adaptive Tent chaos search
下载PDF
导出
摘要 为了有效改善人工蜂群算法(artificial bee colony algorithm,ABC)的性能,结合Tent混沌优化算法,提出自适应Tent混沌搜索的人工蜂群算法.该算法使用Tent混沌以改善ABC的收敛性能,避免陷入局部最优解,首先应用Tent映射初始化种群,使得初始个体尽可能均匀分布,其次自适应调整混沌搜索空间,并以迄今为止搜索到的最优解产生Tent混沌序列,从而获得最优解.通过对6个复杂高维的基准函数寻优测试,仿真结果表明,该算法不仅加快了收敛速度,提高了寻优精度,与其他最近改进人工蜂群算法相比,其性能整体较优,尤其适合复杂的高维函数寻优. In order to improve the performance of artificial bee colony(ABC) algorithm,a novel ABC algorithm based on self-adaptive Tent chaos search which is combined with Tent chaos algorithm is proposed.The algorithm uses Tent chaos mapping to improve the convergence characteristics and prevent the ABC to get stuck on local solutions.In this algorithm,Tent mapping is applied to diversify the initial individuals in the search space.Tent chaotic sequence based an optimal location is produced,and the self-adaptive adjustment of chaos search scopes can obtain the global optima.Experiments on six complex benchmark functions with high-dimension,simulation results further demonstrate that,the improved algorithm not only accelerates the convergence rate and improves solution precision.Compared with other latest improved artificial colony algorithm,it has a better overall performance,especially for complex high-dimensional functions optimization.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第11期1502-1509,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(61373063 61233011 61125305) 湖南省科技计划资助项目(2013FJ4217) 湖南省教育厅资助科研项目(13C086)
关键词 人工蜂群算法 混沌理论 TENT映射 自适应搜索 锦标赛选择策略 artificial bee colony chaos theory Tent mapping self-adapting search tournament selection strategy
  • 相关文献

参考文献20

  • 1KARABOGA D. An idea based on honey bee swarm for numerical optimization [R]. Kayseri: Erciyes University, 2005.
  • 2AKAY B. Performance analysis of artificial bee colony algorithm on numerical optimization problems [D]. Kayseri: Erciyes University, 2009.
  • 3KARABOGA D, OZTURK C. Neural networks training by artificial bee colony algorithm on pattern classification [J]. Neural Network World, 2009, 19(3): 279- 292.
  • 4KARABOGA D, OZTURK C A. Novel clustering approach: artifi- cial bee colony (ABC) algorithm [J]. Applied Soft Computing, 201 I, 11(1): 652 - 657.
  • 5ZHANG C S, OUYANG D, NING J X. An artificial bee colony ap- proach for clustering [J]. Expert Systems with Applications, 2010, 37(7): 4761 - 4767.
  • 6KARABOGA D, AKAY B. A modified artificial bee colony (ABC) algorithm for constrained optimization problems [J]. Applied S:[? Computing, 2011, 11(3): 3021 - 3031.
  • 7AKAY B, KARABOGA D. A modified artificial bee colony al gorithm for real-parameter optimization [J]. Information Sciences 2012, 192(6): 120- 142.
  • 8暴励,曾建潮.一种双种群差分蜂群算法[J].控制理论与应用,2011,28(2):266-272. 被引量:53
  • 9KARABOGA D, BASTURK B. A comparative study of artificial bee colony algorithm [J]. Applied Mathematics and Computation, 2009, 214(1): 108- 132.
  • 10罗钧,李研.具有混沌搜索策略的蜂群优化算法[J].控制与决策,2010,25(12):1913-1916. 被引量:78

二级参考文献59

  • 1孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 2高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 3袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712. 被引量:48
  • 4陈炳瑞,杨成祥,冯夏庭,王文杰.自适应混沌遗传混合算法及其参数敏感性分析[J].东北大学学报(自然科学版),2006,27(6):689-693. 被引量:8
  • 5KARABOGA D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[R].Kayseri:Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
  • 6KARABOGA D,BASTURK B.A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC)algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 7KARABOGA D,BASTURK B.On the performance of artificial bee colony (ABC) algorithm[J].Applied Soft Computing,2008,8(1):687-697.
  • 8KARABOGA D,BASTURK B.Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems[C]//Proc of Advances in Soft Computing:Foundations of Fuzzy Logic and Soft Computing.Berlin:Springer-Verlag,2007:789-798.
  • 9KARABOGA D,AKAY B B.Artificial bee colony algorithm on trai-ning artificial neural networks[C]//Proc of the 15th IEEE Signal Processing and Communications Applications Conference.2007:1-4.
  • 10KARABOGA D,AKAY B B,OZTURK C.Artificial bee colony (ABC)optimization algorithm for training feed-forward neural networks[C]//Proc of Modeling Decisions for Artificial Intelligence Conference.Berlin:Springer-Verlag,2007:318-319.

共引文献408

同被引文献331

引证文献41

二级引证文献632

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部