期刊文献+

全球常规-非常规油气形成分布、资源潜力及趋势预测 被引量:250

Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources
下载PDF
导出
摘要 常规-非常规油气地质理论有效指导了油气资源不断获得新发现。新元古代以来,罗迪尼亚与潘吉亚(Pangea)超大陆2次重要板块构造分与合的旋回,控制特提斯、劳亚、冈瓦纳和太平洋4大构造域,以及克拉通、被动陆缘、裂谷、前陆、弧前和弧后等6类沉积盆地的形成。已发现油气储量中68%来自特提斯域,被动陆缘盆地占全球待发现油气资源量49%。全球盆地演化形成6套主要烃源岩、碳酸盐岩与碎屑岩2类储集层、泥页岩与膏盐2套区域性盖层。受以上因素控制,全球油气分布具有10条规律:1常规-非常规油气"有序聚集";2特提斯域控制全球油气富集带形成分布;3前陆冲断带控制构造油气田群分布;4克拉通内隆起控制特大型油气田展布;5台地边缘控制生物礁滩大油气田群带状分布;6被动大陆边缘控制海洋特大型油气田形成与分布;7前陆前渊斜坡控制大规模重油沥青赋存;8盆地沉积斜坡控制致密油气与煤层气聚集;9盆地深水富有机质沉积控制页岩油气滞留;10低温高压海底沉积控制水合物展布。常规与非常规油气资源比例为2∶8;常规油气资源主要分布于中东、俄罗斯、北美和拉丁美洲4大地区,非常规油气资源主要分布于北美、亚太、拉丁美洲和俄罗斯4大地区。预测世界石油工业有10个发展趋势,油气勘探主要集中在海域深水、陆上深层与非常规3大领域。预判石油产量峰值在2040年前后,石油工业生命周期还可再延续150年。新能源替代化石能源,不是化石能源利用的枯竭,而是新能源更低廉、更低碳、更大众。 Since the Neoproterozoic, two important cycles of separation and junction of the Rodinia and Pangea supercontinents controlled the formation of the Tethys, Laurasia, Gondwana and Pacifica domains, as well as the sedimentary basin types including craton, passive margin, rift, foreland, fore-arc, and back-arc basins. Sixty-eight percent of the discovered reserves are from the Tethys domain, while 49% of the undiscovered possible reserves are in passive margin basins. Six major sets of source rocks, two types of reservoirs (carbonates and clastics), and two regional seals (shale and evaporite) formed in global evolution of basins. Ten patterns are summarized from the above factors controlling the distribution of global hydrocarbon resources. (1) Conventional-unconventional hydrocarbon is accumulated “orderly”. (2) Distribution of Tethys controls the accumulation of the global hydrocarbons. (3) Foreland thrusting zones control the distribution of structural oil/gas fields; (4) Intra-craton uplifts control the distribution of giant oil/gas fields; (5) Platform margins control the banded distribution of giant organic reef and bank type oil/gas fields. (6) Passive margins control the distribution of giant marine oil/gas fields. (7) Foreland deep slopes control the occurrence of large scale heavy oil and bitumen. (8) Basin deposition slopes control the accumulation of tight oil & gas and coalbed methane. (9) Organic rich deep basin sediments control the retention of shale oil and gas. (10) Low temperature and high pressure seafloor sediments control the distribution of hydrate. The conventional/unconventional resources ratio is 2:8. The conventional resources are mainly distributed in the Middle East, Russia, North America, and Latin America. The unconventional resources are mainly distributed in North America, Asia Pacific, Latin America, and Russia. According to the ten trends of global petroleum industry, hydrocarbon exploration is mainly focused on marine deep water, onshore deep layer, and unconventional oil & gas. The peak of oil production will probably come around 2040, and the life span of petroleum industry will last another 150 years. Renewable energy will replace fossil energy, not for the exhaustion of fossil energy, but because it is cheaper and cleaner.
出处 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2015年第1期13-25,共13页 Petroleum Exploration and Development
基金 国家重点基础研究发展计划(973)项目(2014CB239000) 国家油气重大专项"岩性地层油气藏成藏规律 关键技术及目标评价"(2011ZX05001) 中国工程院中国油气资源供给与管道发展战略研究(2013-XZ-23)
关键词 非常规油气地质学 有序聚集 分布规律 致密油气 页岩油气 安岳气田 涪陵页岩气田 生命周期 新能源 unconventional petroleum geology orderly accumulation distribution pattern tight oil and gas shale oil and gas Anyuegas field Fuling shale gas field life cycle renewable energy
  • 相关文献

参考文献35

  • 1Levorsen A I. Geology of petroleum[M]. San Francisico: W.H. Freeman and Company, 1956: 1-80.
  • 2Schmoker J W. Resource-assessing perspectives for unconventional gas systems[J]. AAPG Bulletin, 2002, 86(11): 1993-2000.
  • 3Hubbert M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953, 37(8): 1954-2026.
  • 4BP Company. BP statistical review of world energy June 2013[EB/OL]. (2013-06-13)[2014-02-10]. http://www.bp.com/content/ dam/bp/pdf/statistical-review/statistical_review of world_energy 2013. pdf.
  • 5Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1): 179-210.
  • 6童晓光,张光亚,王兆明,田作基,牛嘉玉,温志新.全球油气资源潜力与分布[J].地学前缘,2014,21(3):1-9. 被引量:36
  • 7Klemme H D, Ulmishek G F. Effective petroleum source rocks of the world: Stratigraphie distribution and controlling depositional factors[J]. AAPG Bulletin, 1991, 75(12): 1809-1851.
  • 8Sorkhabi R. The earth's richest source rocks[J]. GeoExpro, 2009, 6(6): 20-27.
  • 9邹才能,张光亚,陶士振,胡素云,李小地,李建忠,董大忠,朱如凯,袁选俊,侯连华,瞿辉,赵霞,贾进华,高晓辉,郭秋麟,王岚,李新景.全球油气勘探领域地质特征、重大发现及非常规石油地质[J].石油勘探与开发,2010,37(2):129-145. 被引量:267
  • 10邹才能,杨智,崔景伟,朱如凯,侯连华,陶士振,袁选俊,吴松涛,林森虎,王岚,白斌,姚泾利.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26. 被引量:535

二级参考文献375

共引文献3863

同被引文献3873

引证文献250

二级引证文献3371

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部