期刊文献+

0Cr18Ni10Ti不锈钢源壳TIG焊接温度场数值模拟及试验验证 被引量:7

Numerical Simulation on Temperature Field of TIG Welding for 0Cr18Ni10Ti Stainless Steel Cladding and Experimental Verification
下载PDF
导出
摘要 针对0Cr18Ni10Ti不锈钢放射源源壳钨极氩弧焊(TIG)焊接过程,采用ANSYS有限元软件对焊接温度场进行数值模拟分析,建立了非稳态TIG焊接熔池形态的数值分析模型,分析中引入了热焓和表面分布高斯电弧热源模型,初步计算了焊接电流和焊接速度对焊接温度场分布的影响。通过比较焊缝有效熔深的测量结果和计算结果,验证了所建模型的正确性和可靠性。以计算结果为基础,对焊接工艺参数进行优化,建立了0Cr18Ni10Ti不锈钢放射源源壳的焊接工艺路线。 Aiming at tungsten inert gas(TIG)for 0Cr18Ni10 Ti stainless steel cladding for radioactive source,the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software.The numerical model of non-steady TIG welding pool shape was established,the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced,and the effects of welding current and welding speed to temperature field distribution were calculated.Comparing the experimental data and the calculation results under different welding currents and speeds,the reliability and correctness of the model were proved.The welding technological parameters of 0Cr18Ni10 Ti stainless steel were optimized based on the calculation results and the welding procedure was established.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第2期224-229,共6页 Atomic Energy Science and Technology
关键词 放射源 0Cr18Ni10Ti不锈钢 钨极氩弧焊 温度场 数值模拟 radioactive source 0Cr18Ni10Ti stainless steel tungsten inert gas temperature field numerical simulation
  • 引文网络
  • 相关文献

参考文献9

二级参考文献46

  • 1陈家权,沈炜良,尹志新,肖顺湖.基于单元生死的焊接温度场模拟计算[J].热加工工艺,2005,34(7):64-65. 被引量:44
  • 2赵明,武传松,赵朋成.GTAW熔池形状数值模拟精度的改进[J].焊接学报,2006,27(3):17-20. 被引量:14
  • 3Goldak J, Chakravarti A, Bibbv M. A new finite element model for welding heat sources [ J ]. Metallurgical Transactions B, 1984,15 (7) :299-305.
  • 4史建刚 张彦华.电子束焊接能量吸收与热场分析模型[A]..第九次全国焊接会议论文集[C].哈尔滨: 黑龙江人民出版社,1999.549-552.
  • 5Wei P S, Ho C Y. Beam focusing characteristics on energy reflection and absorption in a drilling or welding cavity of paraboloid of revolution[J]. International Journal of Heat and Mass Transfer, 1998, 41(21): 3299 -3308.
  • 6Elena Koleva. Statistical modeling and computer, programs for optimization of the electron beam welding of stainless steel[J].Vacuum, 2001, 62(2): 151 -157.
  • 7Ho C Y, Wei P S. Energy absorption in a conical cavity truncated by spherical cap subject to a focused high intensity beam[J]. Int.J.Heat Mass Transfer, 1997, 40(8): 1895 -1905.
  • 8John Goldak, Aditya Chakravarti, Malcolm Bibby. A new finite model for welding heat source[J]. Metallurgical Transactions B,1984,15B(2):299 -305.
  • 9Hashiomto T, Matsuda F. Effect of welding variables and materials upon bead shape in electron beam welding[J]. Transactions of National Research Institute For Metals,1963, 9(7): 96 -109.
  • 10Choi M, Greif R, Salcudean M.Study of the heat transfer during arc welding with applications to pure metals or alloys and low or high boiling temperature materials[J]. Numerical Heat Transfer, 1987, 11(4): 477 -489.

共引文献257

同被引文献40

引证文献7

二级引证文献6

;
使用帮助 返回顶部