期刊文献+

MEMS压电-磁电复合式振动能量采集器 被引量:10

MEMS Vibration Energy Harvester Based on the Piezoelectric and Magnetoelectric Effect
下载PDF
导出
摘要 具有高能量输出密度的自我供电振动能量采集技术有着迫切的应用需求,是智能化MEMS器件系统发展的重要方向。研究了一种可将外界环境振动能转化为电能的MEMS压电-磁电复合振动能量采集器,其综合了压电发电和磁电发电的优势,为新型MEMS供电研究提供了新思路。利用溶胶-凝胶工艺完成锆钛酸铅(PZT)压电功能薄膜的制备,采用MEMS加工技术完成器件四悬臂梁-中心质量块基础结构的设计和制作,结合集成封装技术实现微结构与永磁铁的微组装。测试结果表明:在一阶谐振频率247 Hz,10 g加速度激励的振动状态下,器件压电部分压电敏感单元与磁电部分电感线圈的单位体积最大有效输出电压分别为2.066×107和5.002×106 mV/cm3。 The self-powered vibration energy harvesting technology with high output power density is urgently required,which is an important developing direction for the intelligent MEMS device system.The MEMS vibration energy harvester of piezoelectricity and magnetoelectricity for the transformation of the environment vibration energy into electric energy was integrated.The harvester combines the advantages of the piezoelectric and magnetoelectric generations,providing a new idea for the novel MEMS power supply investigation.The PZT piezoelectric functional thin film was accomplished by the sol-gel process.The foundation structure of the four-cantilever beam-center mass block for the MEMS vibration energy harvester was designed and fabricated by using the MEMS micromachining technology.The micro-structure and permanent magnet were assembled by the integrated packaging technology.The experimental results show that the maximum effective output peak-peak voltage of the device is excited under 10 gacceleration and first order resonant frequency of 247 Hz.It can generate the maximum effective output voltage per unit volume of 2.066×107 and 5.002×106 mV/cm3 for the piezoelectric sensing unit of the piezoelectric part and inductive coil of the magentoelectric part,respectively.
出处 《微纳电子技术》 CAS 北大核心 2015年第2期103-107,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(51275492 61401406) 国家高技术研究发展计划(863计划)资助项目(SQ2015AAJY1634)
关键词 微机电系统(MEMS) 压电式 电磁式 振动能 能量采集器 micro-electromechanical system(MEMS) piezoelectricity electromagneticity vibration energy energy harvester
  • 相关文献

参考文献13

  • 1TANG G, YANG B, LIU J Q, et al. Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film [J]. Sen- sors and Actuators: A, 2014, 205 (7) : 150 - 155.
  • 2HAN M, YUAN Q, SUN X M, et al. Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications [J]. Journal of Microelectromechanical Systems, 2014, 23 (1): 204-212.
  • 3LIN S C, WU W J. Fabrication of PZT MEMS energy har- vester based on silicon and stainless-steel substrates utilizing an aerosol deposition method [J]. Journal of Micromechanics and Microengineering, 2013, 23 (12) : 1 - 12.
  • 4SUZUKI Y, MIKI D, EDAMOTO M, et al. A MEMS elec- tret generator with electrostatic levitation for vibration-driven energy-harvesting applications [J]. Journal of Micromechanics and Microengineering, 2010, 20 (10): 1- 8.
  • 5张亚婷,丑修建,郭涛,熊继军.振动驱动微能源技术研究进展[J].微纳电子技术,2012,49(4):242-247. 被引量:14
  • 6孙健,李以贵,刘景全,杨春生,何丹农.微压电式振动能量采集器的研究进展[J].微纳电子技术,2009,46(11):673-677. 被引量:21
  • 7KOYAMA D, NAKAMU R K. Electric power generation using vibration of a polyuria piezoelectric thin film [J]. Applied Acoustics, 2010, 71 (5) : 439- 445.
  • 8ERTURK A, RENNO J M, INMAN D J. Modeling of piezo- electric energy harvesting from an L-shaped beam-mass struc- ture with an application to UAVs [J]. Journal of Intelligent Material Systems and Structures, 2009, 20 (5) : 529 - 544.
  • 9LALLART M, GARBUIO L, PETIT L, et al. Double syn- chronized switch harvesting (DSSH) : a new energy harvesting scheme for efficient energy extraction [J]. IEEE Trans Ultra- sonFerroelectricFreqControl, 2008, 55 (10): 2119-2130.
  • 10KIM S B, PARK H, KIM S H, et al. Comparison of MEMS PZT cantilever based on d31 and d33 modes for vibration ener- gy harvesting [J]. Journal of Microelectromechanical Sys- tems, 2012, 22 (1): 26-33.

二级参考文献52

  • 1James M.Gilbert,Farooq Balouchi.Comparison of Energy Harvesting Systems for Wireless Sensor Networks[J].International Journal of Automation and computing,2008,5(4):334-347. 被引量:26
  • 2郑可炉,褚家如,鲁健,李恒.PZT铁电薄膜湿法刻蚀技术研究[J].压电与声光,2005,27(2):209-212. 被引量:9
  • 3ROUNDY S J. Energy scavenging for wireless sensor nodes with a focus on vibration electricity conversion [D]. UC Berkeley, 2003: 19- 32.
  • 4WILLIAMS C B, SHEARWOOD S, YATES R B, et al. Development of an electromagnetic micro-generator[J]. IEEE Proc: Circuits, Devices and Syst, 2001, 148: 337-342.
  • 5KEE S M, LIANG H, YI J G, et al. Tire tread deformation sensor and energy harvester development for "smart tire" applications[C] //Proc of Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems. San Diego, USA, 2007: 1- 12.
  • 6JEONG S J, KIM M S, SONG J S. Two-layered piezoelectric bender device for micro-power generator [J]. Sensors and Actuators, 2008, 148 (1):158- 167.
  • 7LEE B S, LIN S C, WU W J. Comparison of the piezoelectric MEMS generators with interdigitat electrodes and laminated electrodes[C]//Proc of Smart Sensor Phenomena, Technology, Networks and Systems. San Diego, USA, 2008:1 - 8.
  • 8RAJENDRA K S. Piezoelectric micro power generator (PMPG) : A MEMS-based energy scavenger[M]. Massachusetts : Massachusetts Institute of Technol. 2003: 23-31.
  • 9SHEN D, PARK J H, AJITSARIA J, et al. The design, fabrication and evaluation a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting [J]. Journal of Micromechanics and Microengineering, 2008, 18 (5): 550-557.
  • 10XUE H, HU Y T, WANG Q M. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies [J]. IEEE Transactions on ultrasonics ferroelectrics and frequency control, 2008, 55 (9): 2104-2108.

共引文献38

同被引文献92

  • 1赵鸿铎,梁颖慧,凌建明.基于压电效应的路面能量收集技术[J].上海交通大学学报,2011,45(S1):62-66. 被引量:39
  • 2蓝澜,何青,赵晓彤,宋博.新型微型电磁式振动能量收集器[J].中南大学学报(自然科学版),2013,44(S1):436-442. 被引量:10
  • 3LEE S, YOUN B D, JUNG B C. Robust segment type energy harvester and its application to a wireless sensor [J]. Smart Materials and Structures, 2009, 18 (9): 15-17.
  • 4HAN M, YUAN Q, SUN X M, et al. Design and fabrication of integrated magnetic MEMS energy harvester for low fre- quency application [J]. Journal of Microelectrornmechanical Systems, 2014, 23 (1): 204-212.
  • 5ANDO B, BAGLIO S, TRIGONA C, et al. Nonlinear me- chanism in MEMS devices for energy harvesting application [J]. Journal of Micromeehanics and Mieroengineering, 2010, 20 (12): 125020 1 125020-12.
  • 6SAR A, ALKAN C, KARAIPEKLI A. Prepara- tion, charac- terization and thermal properties of PMMA/n-heptadecane mi- crocapsules as novel solid-liquid micro PCM for thermal energy storage [J]. Applied Energy, 2010, 87 (5): 1529- 1534.
  • 7BASSET P, GALAYKO D, PARACHA A M, et al. A batch-fabricated and electric-free silicon electrostatic vibra- tion energy harvester[J]. Journal of Micromechanics and Microengineering, 2009, 19 (11): 115025-1-115025-12.
  • 8SOOD R K. Piemeleetrie micro power generator (PMPG) : a MEMS- based energy .scavenger [D]. Cambridge: MIT dissertation, 2013.
  • 9HAN M D, YUAN Q, SUN X M, et al. Design and fabrica- tion of integrated magnetic MEMS energy harvester for low frequency applications [J]. Journal of Microelectromechanical Systems, 2014, 23 (1): 204-212.
  • 10TANG G, YANG B, LIU J Q. Development of high per- formance piezoelectric d33 mode MEMS vibration energy har- vester based on PMN-PT single crystal thick film [J]. Sen- sors & Actuators: A, 2014, 205 (1): 1511-155.

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部