期刊文献+

提高水平集方法初始化计算速度的研究 被引量:5

Speed up Initialization Time for the Level Set Method
下载PDF
导出
摘要 本文对水平集方法的初始化步骤进行了改进。在水平集方法中,初始化是一个很重要的步骤。它包括计算图像平面中每个点的初始水平集距离,同时找到与当前点距离最近的曲线上的点。这是一个费时的过程,影响到整个水个集方法的计算速度。本文基于快速推进法提出了一种快速初始化方法。这种方法只需要O(N)的时间就能够遍历所有的图像点,完成初始化。最后,对三种不同的初始化方法:直接法、快速推进法和本文的方法在计算速度上作了对比。实验表明,最终得到理想的分割结果的情况下,本文的方法在时间上优于其他两种方法。 In the paper, we modify the initialization step for the level set method. The initialization is an important step in the level set method. The main task of this step is calculating the level set distance of a point in the image plane and finding the nearest point on the curve of the current point. However, this step is a computational time-consuming step. Our modified initialization step is based on the fast marching method. It takes only time O (N ) to accomplish the whole initialization process. Finally, we compare the modified initialization step with the fast marching method and the direct method. The results show that the modified method takes less time to access all the data than the other two methods while still obtains the ideal segmentation results.
出处 《信号处理》 CSCD 2002年第2期97-101,共5页 Journal of Signal Processing
基金 国家自然科学基金(No.69931010)的资助
关键词 计算速度 水平集方法 快速推进法 初始化 图像处理 Level set Fast marching, Initialization
  • 相关文献

参考文献9

  • 1[1]R. Malladi, J. A. Setbian, and B. C. Vemuri, Shape Modeling with Front Propagation: A Level Set Approach,IEEE Trans. On PAMI, 17(2): 158-175, Feb. 1995.
  • 2[2]J. A. Sethian, Level Set methods and Fast Marching Methods: Evolving interfaces in computational geometry,fluid mechanics, computer vision, and materials science,Cambridge University Press, 1999.
  • 3[3]S. Osher, J. A. Sethian, Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational Physics, 79: 12-49, 1988.
  • 4[4]N. Paragios, R. Deriche, Geodesic Active Contours for Supervised Texture Segmentation, In IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA,1999.
  • 5[5]V. Caselles, R. Kimmel, and G. Sapiro, Geodesic Active Contours, International Journal of Computer Vision, 22(1):61-79, 1997.
  • 6[6]D.Adalsteinsson and J.A.Sethian, The Fast Construction of Extension Velocities in Level Set Methods, Journal of Computational Physicsl 48, 2-22, 1999
  • 7[7]T. Chan and L. Vese, Active Contours without Edges,IEEE Trans. On Image Processing, pp266-277, Vol 10, No.2, Feb. 2001.
  • 8[8]V. Caselles, ECatté, T. Col1, and F. Dibos, A geometric model for active contours in image processing, Numer.Math, vol.66, pp. 1-31, 1993.
  • 9[9]J.A.Sethian, Curvature and the evolution of fronts,Commun. in Mathematical Physics, Vol. 101, pp.487-499, 1985.

同被引文献41

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部