摘要
将内壁磨损套管月牙模型简化为偏心圆筒模型,通过直角坐标向双极坐标的转换和选取曲线坐标中表示应力的复势,得出了偏心磨损套管等效应力和剩余抗内压强度计算方法。磨损套管等效应力解析解和数值解对比分析表明,随着磨损深度的增加和作用在内表面压力的增大,磨损套管危险截面内、外表面的等效应力呈指数增大;磨损套管抗内压强度随磨损深度线性减少。采用双极坐标公式计算偏心磨损套管等效应力与有限元分析结果相差小于0.9%。偏心磨损套管抗内压强度理论解和月牙形磨损套管抗内压强度试验值之间相对误差小于10%。将月牙形磨损套管简化为偏心圆筒模型,采用偏心磨损套管抗内压强度公式计算月牙形磨损套管抗内压强度是可行的。
Simplifying the crescent casing wear model into the eccentric wear one, transforming the rectangular coordinate to the bipolar one and selecting the complex potential, the formulas of von Mises stress and burst strength the eccentric wear casing are deduced. The von Mises stress of the danger section of the worn casing increases exponentially with the casing wall thickness, while the burst strength of worn casing reduces linearly. The maximum error is 0.9% between the theoretical and numerical solutions to the yon Mises stress of worn casing. The relative error between the theoretical solution of eccentric worn casing burst strength and the test value of crescent-shaped worn casing is less than 10%. It is feasible that the burst strength formula of the eccentric worn casing is adapted to calculate the one of crescent-shaped worn casing under the internal pressure.
出处
《机械设计与制造》
北大核心
2015年第2期21-24,共4页
Machinery Design & Manufacture
基金
国家自然科学基金(51374171)