期刊文献+

溶解氧浓度的直接自适应动态神经网络控制方法 被引量:31

Direct adaptive dynamic neural network control for dissolved oxygen concentration
下载PDF
导出
摘要 针对污水处理过程溶解氧浓度的控制问题,提出一种直接自适应动态神经网络控制方法(direct adaptive dynamic neural network control,DADNNC).构建的控制系统主要包括神经网络控制器和补偿控制器.神经网络控制器由自组织模糊神经网络实现系统状态与控制量之间的映射;提出一种基于规则无用率的结构修剪算法,并给出结构调整后网络收敛的理论证明.同时,为保证系统稳定,设计补偿控制器减小网络逼近误差,参数调整由Layapunov理论给出.国际基准仿真平台上的实验表明,与固定结构神经网络控制器、PID和模型预测控制等已有控制方法相比,DADNNC方法具有更高的控制精度和更强的适应能力. A direct adaptive dynamic neural network control (DADNNC) method is proposed to control the dissolved oxygen concentration in the wastewater treatment process. The established control system mainly includes a neural con- troller and a compensate controller. The neural controller fulfills the mapping between the system states and control variable using the fuzzy neural network, which can adjust the structure and parameters simultaneously. A novel pruning algorithm is presented based on the useless rate of the rules, and the convergence while adding and pruning neurons is guaranteed theoretically. Further, the compensation controller is designed for decreasing the approximating error introduced by the neural network, and the parameter update law is deduced by the Lyapunov theorem. Finally, the simulation results, based on the international benchmark simulation platform, show that the proposed method can achieve better control accuracy and superior adaptive ability compared with neural network controller with fixed structure, PID controller and model predictive control method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第1期115-121,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61034008 61225016) 北京市自然科学基金项目(4122006) 教育部博士点新教师基金项目(20121103120020)资助~~
关键词 动态神经网络控制器 溶解氧 规则无用率 污水处理过程 dynamic neural network controller dissolved oxygen useless rate wastewater treatment process
  • 相关文献

参考文献16

  • 1张平,苑明哲,王宏.基于国际评价基准的溶解氧控制方法研究[J].信息与控制,2007,36(2):199-203. 被引量:13
  • 2HAN H G, QIAO J E Adaptive dissolved oxygen control based on dynamic structure neural network [J]. Applied Soft Computing, 2011, 11(4): 3812 - 3820.
  • 3CARLSSON B, REHNSTRM A. Control of an activated sludge pro- cess with nitrogen removal -- a benchmark study [J]. Water Science and Technology, 2002, 45(4/5): 135 - 142.
  • 4AYESA E, SOTA A, GRAU E et al. Supervisory control strategies for the new WWTP of Galindo-Bilbao: the long run from the conceptual design to the full-scale experimental validation [J]. Water Science and Technology, 2006, 53(4): 193 -201.
  • 5HOLENDA B, DOMOKOS E. Dissolved oxygen control of the ac- tivated sludge wastewater treatment process using model predictive control [J]. Computers and Chemical Engineering, 2008, 32(6): 1270 - 1278.
  • 6HAN H G, QIAO J F, CHEN Q L. Model predictive control of dis- solved oxygen concentration based on a self-organizing RBF neural network [J]. Control Engineering Practice, 2012, 20(4): 465 - 476.
  • 7TRAORE A, GRIEU S, PUIG S, et al. Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant [J]. Chemical Engi- neering Journal, 2005, 111(1): 13 - 19.
  • 8韩广,乔俊飞,薄迎春.溶解氧浓度的前馈神经网络建模控制方法[J].控制理论与应用,2013,30(5):585-591. 被引量:21
  • 9薄迎春,乔俊飞.启发式动态规划在污水处理过程控制中的应用[J].控制理论与应用,2013,30(7):828-833. 被引量:6
  • 10BELCHIOR C A C, ARAUJO R A M, LANDECK J A C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control [J]. Computers & Chemical Engi- neering, 2012, 37(2): 152 - 162.

二级参考文献54

  • 1胡玉玲,冉维丽,乔俊飞.污水处理过程中DO的模糊神经网络控制[J].计算技术与自动化,2003(z1):68-71. 被引量:3
  • 2袁德成,于海斌.活性污泥脱氮过程的建模与控制[J].控制理论与应用,2004,21(3):483-488. 被引量:5
  • 3刘超彬,乔俊飞,张芳芳.污水处理过程中溶解氧的模糊神经网络控制[J].山东大学学报(工学版),2005,35(3):83-87. 被引量:22
  • 4姜惠兰,李桂鑫,崔虎宝,孟庆强.PWM整流器的径向基函数神经网络控制新方法[J].信息与控制,2006,35(3):406-410. 被引量:4
  • 5Hayakawa T, Haddad W M, Hovakimyan N. Neural network adaptive control for a class of nonlinear uncertain dynamical systems with asymptotic stability guarantees[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 80-89.
  • 6Islam M M, Yao X, Murase K. A constructive algorithm for training cooperative neural network ensembles[J]. IEEE Transactions on Neural Networks, 2003, 14(4): 820-834.
  • 7Wu S T, Chow T W S. Self-organizing and self-evolving neurons: A new neural network for optimization[J]. IEEE Transactions on Neural Networks, 2007, 18(2): 385-396.
  • 8de Lacerda E G M, de Carvalho A C P L F, Ludermir T B. Evolutionary optimization of RBF networks[C]//Proceedings of the Sixth Brazilian Symposium on Neural Networks. Piscataway, NJ, USA: IEEE, 2000: 219-224.
  • 9Qiao J F, Zhang Y, Han H Q. Fast unit pruning algorithm for feedforward neural network design[J]. Applied Mathematics and Computation, 2008, 205(2): 622-627.
  • 10Han H G, Qiao J F, Li X Y. Structure automatic change in neural network[M]//Lecture Notes in Computer Science (vol. 5263). Berlin, Germany: Springer, 2008: 762-775.

共引文献46

同被引文献234

引证文献31

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部