期刊文献+

基于深度学习的图像自动标注算法 被引量:26

Image Auto-Annotation Based on Deep Learning
下载PDF
导出
摘要 图像的自动标注是图像检索领域一项基础而又富有挑战性的任务。深度学习算法自提出以来在图像和文本识别领域取得了巨大的成功,是一种解决"语义鸿沟"问题的有效方法。图像标注问题可以分解为基于图像与标签相关关系的基本图像标注和基于标注词汇共生关系的标注改善两个过程。文中将基本图像标注问题视为一个多标记学习问题,图像的标签先验知识作为深度神经网络的监督信息。在得到基本标注词汇的基础上,利用原始图像标签词汇的依赖关系与先验分布改善了图像的标注结果。最后将所提出的改进的深度学习模型应用于Corel和ESP图像数据集,验证了该模型框架及所提出的解决方案的有效性。 Image auto-annotation is a basic and challenge task in the image retrieval work.The traditional machine learning methods have obtained a lot achievements in this field.The deep learning algorithm has achieved great success in image and text learning work since it is presented,so it can be an efficient method to solve the semantic gap problems.Image auto-annotation can be decomposed into two steps,that is,the basic image auto-annotation based on the relationship between image and tag,and the annotation enhanced based on the mutual information of the tags.In this article,the basic image auto-annotation is viewed as a multi-labelled problem.Therefore the prior knowledge of the tags can be used as the supervise information of the deep neural network.After obtained the image tags,the dependent relationship of the tags is used to improve the annotation result.Finally,the model is tested in Corel and ESP datasets,and results prove that the method can efficiently solve the image auto-annotation problems.
作者 杨阳 张文生
出处 《数据采集与处理》 CSCD 北大核心 2015年第1期88-98,共11页 Journal of Data Acquisition and Processing
基金 国家自然科学基金重点(U1135005)资助项目
关键词 机器学习 深度学习 神经网络 图像自动标注 machine learning deep learning neural network image auto-annotation
  • 相关文献

参考文献27

  • 1卢汉清,刘静.基于图学习的自动图像标注[J].计算机学报,2008,31(9):1629-1639. 被引量:42
  • 2许红涛,周向东,向宇,施伯乐.一种自适应的Web图像语义自动标注方法[J].软件学报,2010,21(9):2183-2195. 被引量:15
  • 3Cusano C, Cioeca G, Schettini R. Image annotation using SVM[C]//International Society for Optics and Photonics. [S. 1. ] : SHE, 2004: 330-338.
  • 4Gao Y, Fan J, Xue X, et al. Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers[C]//Proceedings of the 14th Annual ACM International Conference on Multimedia. [S. 1. ]: ACM, 2006: 901- 910.
  • 5Verma Y, Jawahar C V. Exploring SVM for image annotation in presence of confusing labels[C]//Proceedings of the 24th British Machine Vision Conference. London, British: BMVC, 2013: 25.1-25.11.
  • 6Li J, Wang J Z. Automatic linguistic indexing of pictures by a statistical modeling approach [J]. Pattern Analysis and Ma- chine Intelligence, IEEE Transactions on, 2003, 25(9): 1075-1088.
  • 7Chang E, Goh K, Sychay G, et al. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines [J]. Circuits and Systems for Video Technology, IEEE Transactions on, 2003, 13(1) : 26-38.
  • 8Carneiro G, Chan A B, Moreno P J, et al. Supervised learning of semantic classes for image annotation and retrieval [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2007, 29(3): 394-410.
  • 9Mori Y, Takahashi H, Oka R. Image-to-word transformation based on dividing and vector quantizing images with words[C] //First International Workshop on Multimedia Intelligent Storage and Retrieval Management. Florida, USA: ACM, 1999.
  • 10Blei D M, Jordan M I. Modeling annotated data[C]// Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval. Toronto, Canada: ACM, 2003: 127-134.

二级参考文献56

  • 1赵世奇,张宇,刘挺,陈毅恒,黄永光,李生.基于类别特征域的文本分类特征选择方法[J].中文信息学报,2005,19(6):21-27. 被引量:21
  • 2Li XR,Chen L,Zhang L,Lin FZ,Ma WY.Image annotation by large-scale content-based image retrieval.In:Nahrstedt K,et al.,ed.Proc.of the 14th ACM Int'l Conf.on Multimedia.Santa Barbara:ACM Press,2006.607-610.
  • 3Wang XJ,Zhang L,Jing F,Ma WY.AnnoSearch:Image auto-annotation by search.In:Hari S,Milind RN,John RS,Yong R,eds.Proc.of the Conf.Image and Video Retrieval.2006.1483-1490.
  • 4Feng HM,Shi R,Chua TS.A bootstrapping framework for annotating and retrieving WEB images.In:Schulzrinne H,et al.,eds.Proc.of the 12th ACM Int'l Conf.on Multimedia.New York:ACM Press,2004.960-967.
  • 5Tseng VS,Su JH,Wang BW,Lin YM.WEB image annotation by fusing visual features and textual information.In:Proc.of the 2007 ACM Symp.on Applied Computing,Symposium on Applied Computing.New York:ACM Press,2007.1056-1060.
  • 6Mori Y,Takahashi H,Oka R.Image-to-word transformation based on dividing and vector quantizing images with words.In:Proc.of the 1st Int'l Workshop on Multimedia Intelligent Storage and Retrieval Management.1999.
  • 7Duygulu P,Barnard K,de Freitas JFG,Forsyth DA.Object recognition as machine translation:Learning a lexicon for a fixed image vocabulary.In:Proc.of the European Conf.on Computer Vision.2002.97-112.
  • 8Blei D,Jordan M.Modeling annotated data.In:Proc.of the Int'l ACM SIGIR.Toronto:ACM Press,2003.127-134.
  • 9Jeon J,Lavrenko V,Manmatha R.Automatic image annotation and retrieval using cross-media relevance models.In:Proc.of the Int'l ACM SIGIR.Toronto:ACM Press,2003.119-126.
  • 10Li J,Wang J.Automatic linguistic indexing of pictures by a statistical modeling approach.IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(19):1075-1088.

共引文献104

同被引文献394

引证文献26

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部