期刊文献+

求解奇异非线性方程组的牛顿不精确最小二乘算法

Inexact Newton-least Squares Methods for Singular Nonlinear System of Equations
下载PDF
导出
摘要 对运用M-P逆建立的Newton迭代法做近似,构造不精确的算法.取Newton方程组的最小二乘解的近似解推导构造不精确的算法,结果可得到不精确Gauss-Newton算法和不精确Levenberg-Marquardt算法;用一迭代法计算雅可比矩阵的Moore-Penrose逆,截取它的一个近似矩阵构造不精确的算法,给出了近似程度的控制条件,证明了其收敛性;用雅可比矩阵的局部信息代替其全部信息构造不精确的算法,证明了算法的收敛性.数值例子也表明了不精确算法在求解大型方程组问题上的优越性. Inexact methods of Newton's method constructed with Moore-Penrose inverse are given.First,inexact Gauss-Newton method and inexact Levenberg-Marquardt method are deduced by taking an approximate solution of the least squares solution of Newton equations.Second,the inexact method is constructed by taking an approximate matrix of Moore-Penrose inverse of Jacobian matrix,and its convergence is proved.Third,the inexact method is constructed by using local information instead of the whole information of the Jacobian matrix,and the convergence is proved.The numerical example also indicates its superiority in solving large system of equations.
出处 《河北师范大学学报(自然科学版)》 CAS 2015年第2期104-110,共7页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(70901073) 中央高校基本科研业务费专项资金(JGK101676)
关键词 奇异非线性方程组 不精确算法 MOORE-PENROSE逆 牛顿最小二乘算法 singular nonlinear system of equations inexact method Moore-Penrose inverse Newton-least squares methods
  • 相关文献

参考文献25

  • 1KANTOROVICH L V,AKILOV G P. Functional Analysis[M]. Oxford: Pergamon, 1982.
  • 2SMALE S. Newton's Method Estimates from Data at One Point[M]//EWING K, GROSS K, MARTIN C. The Merging of Disciplines : New Directions in Pure, Applied and Computational Mathematics, New York : Springer, 1986 .. 185-196.
  • 3TRAUB J F,WOZNIAKOWSKI H, Convergence and Complexity of Newton Iteration[J]. J Assoc Comput Math, 1979, 29:250-258.
  • 4WANG Xinhua. Convergence of Newton's Method[J]. Chinese Science Bulletin, 1980,25:36-37.
  • 5ORTEGA J M, RHEINBOLDT W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Aca- demic Press, 1970.
  • 6ANEREW. On Newton-iterative Methods for the Solution of Systems of Nonlinear Equations[J]. SIAM J Nuner Anal, 1978,15 .. 755-771.
  • 7DEMBO R S, EISENSTAT S C, STEIHAUG T. Inexact Newton Methods[J]. SIAM J Nuner Anal, 1982,14..400-408.
  • 8DEMBO R S,STEIHAUG T. Truncate&Newton Algorithms for Large-scale Unconstrained Optimization[J]. Math Pro gramming, 1983,26 : 190-212.
  • 9LIU Hao,NI Qin. Incomplete Jacobian Newton Method for Nonlinear Equations[J]. Computer and Mathematics with Ap- plications, 2008,56 : 218-227.
  • 10陈飞,王海军,曹苏玉.求解非线性方程组的改进不精确雅可比牛顿法[J].计算机工程与应用,2014,50(14):45-47. 被引量:4

二级参考文献12

  • 1朱静芬,韩丹夫.“牛顿类”迭代的收敛性和误差估计[J].浙江大学学报(理学版),2005,32(6):623-626. 被引量:10
  • 2Xueping Guo.ON SEMILOCAL CONVERGENCE OF INEXACT NEWTON METHODS[J].Journal of Computational Mathematics,2007,25(2):231-242. 被引量:7
  • 3王兴华.Newton方法的收敛性[J].科学通报(数理化专辑),1980,25:36-37.
  • 4DECKER D W, KELLEY C T. Convergence rates for Newton's mathod at singular points[J]. SIAM J Nuner Anal, 1983,20:296-314.
  • 5GRIEWANK A. On solving nonlinear equations with simple singulartise or nearly singular solutions[J]. SIAM Rev, 1985,27.537-563.
  • 6ALLGOWER E L, BoHMER K. Resolving singular nonlinear equations[J]. Rocky Mount Math J, 1987, 18:225-268.
  • 7KANTOROVICH L V, AKILOV G P. Functional Analysis[M]. Oxford: Pergamon, 1982.
  • 8SMALE S. Newton's method estimates from data at one point[C]//EWlNG K, GROSS K, MARTIN C. The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics, New York: Springer, 1986 : 185-196.
  • 9TRAUB J F, WOZNIAKOWSKI H. Convergence and complexity of Newton iteration[J]. J Assoc Comput Math, 1979,29:250-258.
  • 10WANG G R, WEI Y M, QIAO S Z. Generalized Inverse: Theory and Computations[M]. Beijing: Science Press, 2004.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部