期刊文献+

相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径 被引量:2

An integral-transformation corresponding to quantum mechanical fundamental commutative relation and its application in deriving Wigner function
原文传递
导出
摘要 本文指出相空间中存在有对应量子力学基本对易关系积分变换,其积分核是1/π::exp[±2i(q-Q)×(p-P)]::,其中::::表示Weyl排序,Q,P是坐标算符和动量算符,其功能是负责算符的三种常用排序(P-Q排序、Q-P排序和Weyl排序)规则之间的相互转化.此外,还导出了此积分核与Wigner算符之间的关系,以及Wigner函数在这类积分变换下的性质及用途. In this paper, it can be found that there is a type of integra-transformation which corresponds to a quantum mechanical fundamental commutative relation, with its integral kernel being 1π ::exp[±2i (q-Q) (p-P )]::, here ::::denotes Weyl ordering, and Q and P are the coordinate and the momentum operator, respectively. Such a transformation is responsible for the mutual-converting among three ordering rules(P-Q ordering, Q-P ordering and Weyl ordering). We also deduce the relationship between this kernel and the Wigner operator, and in this way a new approach for deriving Wigner function in quantum states is obtained. In this paper, it can be found that there is a type of integra-transformation which corresponds to a quantum mechanical fundamental commutative relation, with its integral kernel being 1π ::exp[±2i (q-Q) (p-P )]::, here ::::denotes Weyl ordering, and Q and P are the coordinate and the momentum operator, respectively. Such a transformation is responsible for the mutual-converting among three ordering rules(P-Q ordering, Q-P ordering and Weyl ordering). We also deduce the relationship between this kernel and the Wigner operator, and in this way a new approach for deriving Wigner function in quantum states is obtained.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第5期57-62,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11175113 11275123)资助的课题~~
关键词 对易关系 积分变换 Weyl编序 WIGNER函数 commutative relation integral transformation Weyl ordering Wigner function
  • 相关文献

参考文献15

  • 1Dragoman D. 2002 .Progress In Optics 42 424.
  • 2Dragoman D, Dragoman M: 1999 Prog. Quantum Electron. 23: 131.
  • 3Crasser O, Mack H, Schleich W P. 2004 .Fluct. Noise Lett. 04 L43.
  • 4Nienhuis G, Allen L: 1993 Phys. Rev. A 48 656.
  • 5Wolf K B and Kurmyshev E V: 1993 Phys. Rev. A 47 3365.
  • 6Dirac P A M: 1930 The Principle of Quantum Mechanics (Oxford: Clarendon Press).
  • 7Lü C H, Fan H Y, Jiang N Q. 2010 .Chin. Phys. B: 19: 120303.
  • 8Fan H Y. 2003 .Phys. Lett. A 313 343.
  • 9Meng X G, Wang J S, Liang B L. 2011 .Chin. Phys. B: 20: 014204.
  • 10Weyl H: 1927 Z. Phys. 46: 1.

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部