期刊文献+

GPS异常监测数据的关联负选择分步识别算法 被引量:3

Multi-step identification algorithm based on relational negative selection for GPS abnormal monitoring data
下载PDF
导出
摘要 为了有效地判别GPS异常监测数据,建立了GPS监测序列的关联模型;针对关联分析中无法准确判定异常数据发生范围的问题,提出了基于关联负选择的异常监测数据分步识别算法;对于固定数目和固定半径的检测器,通过设定空间覆盖率来自动生成合适数目的可变半径检测器,并采用蒙特卡洛的方法解决了可变半径检测器的空间重叠问题;对于负选择算法中自体空间动态变化的问题,提出了自适应半径的自体表示方法,使得自体半径能够随着自体数据的聚集特征自适应调整,满足了动态监测的需求;采用仿真数据检验了所提方法的可行性和有效性,分析结果表明自适应半径的负选择算法能够以较少的检测器覆盖较大的异体空间,提高了GPS数据的异常检测率,且该算法能够准确给出异常监测数据的发生范围,具有较高的实用价值。 In order to effectively identify the abnormal monitoring data of GPS,the relational model of GPS monitoring time series is established.Then,the multi-step identification algorithm of abnormal GPS monitoring data based on the relational negative selection is proposed to overcome the drawback that the relational analysis cannot accurately determine the extent of the abnormal data.For the fixed-number and constant-sized detectors,an appropriate number of variable-sized detectors can be automatically generated by setting the space coverage rate,and the problem of space overlap is solved by Monte Carlo method.In addition,the self-representing method with self-adaptive size is proposed to solve the dynamic change of self space in negative selection algorithm,allowing the self radius adaptively adjust with the clustering features of self data,which satisfies the requirement of GPS based dynamic monitoring.Finally,the simulation data are used to verify the feasibility and efficiency of the method respectively.The analysis results show that the negative selection algorithm with self-adaptive radius can cover larger non-self space by fewer detectors,which improves the abnormal detection rate of GPS data.Moreover,the proposed algorithm can accurately determine the extent of abnormal data,which has high practical values in civil engineering.
出处 《振动工程学报》 EI CSCD 北大核心 2015年第1期1-8,共8页 Journal of Vibration Engineering
基金 国家自然科学基金委创新研究群体基金资助项目(51421064) 国家优秀青年科学基金资助项目(51222806) 国家自然科学基金面上项目(51178083)
关键词 结构损伤 全球定位系统 异常检验 关联分析 负选择算法 structure damaged global positioning system outlier detection relational analysis negative selection algorithm
  • 相关文献

参考文献5

二级参考文献33

  • 1欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,19(1):8-12. 被引量:120
  • 2滕龙,曾储惠.模式识别技术在桥梁状态评估与安全监测中的应用[J].中国铁道科学,2005,26(4):47-51. 被引量:5
  • 3王兆辉,樊可清,李霆.系统辨识在桥梁状态监测中的应用[J].中南公路工程,2006,31(3):159-163. 被引量:5
  • 4胡顺仁,陈伟民,章鹏,符欲梅,梁宗保.基于RBF神经网络的桥梁挠度数据恢复研究[J].仪器仪表学报,2006,27(12):1605-1608. 被引量:16
  • 5何球藻 吴厚生.医学免疫学[M].上海:上海医科大学出版社,2000..
  • 6Aktan E, Chase S, Inman D, et al. Monitoring and managing the health of infrastructure systems[ C ]//Proc. of the 2001 SPIE Conference on Health Monitoring of Highway Transportation Infrastructure. SPIE, 2001: 6-8
  • 7Tong G F, Koc M, Lee J. System performance assessment based on control system criteria under operational conditions[C ]//Proceedings of MIM 2002: 5th International Conference on Managing Innovations in Manufacturing (MIM). Milwaukee, Wisconsin, USA: 2002:418-426
  • 8Hu Shunren, Chen Weimin, Miao Yu, et al. A novel method based on the correlation analysis to restore nonlinear deflection abnormity data [C]//Proc. of International Conference on Sensing, Computing and Automation. 2006: 108-112
  • 9Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1993:207-216
  • 10Hand D J, Mannila H, Smyth P. Principles of data mining [M ]. Francisco: MIT Press, 2003:211-267

共引文献41

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部