期刊文献+

Cu-H_2O纳米流体平板太阳集热器集热性能研究 被引量:3

EXPERIMENTAL INVESTIGATION ON EFFICIENCY OF FLAT-PLATE SOLAR COLLECTORS WITH Cu-H_2O NANOFLUIDS
下载PDF
导出
摘要 采用两步法配制Cu-H2O纳米流体,对不同质量分数、粒径的Cu-H2O纳米流体和水作为平板太阳热水器的集热工质,测试其导热系数,并在相同太阳辐照下进行集热性能实验,研究平板集热器的集热效率、水箱中的水温与得热量。实验结果表明:纳米流体可明显提高水的导热性能。粒径为25 nm,质量分数为0.10%的Cu-H2O纳米流体集热效率比水的提高了23.83%,质量分数为0.20%的Cu-H2O纳米流体的集热效率反而低于0.10%的。粒径为50 nm的Cu-H2O纳米流体集热效率低于粒径为25 nm的。粒径为25 nm、质量分数为0.10%的纳米流体循环系统中最高水温与最高得热量相对于水作为工质分别提高了12.24%和24.52%。 In this study, Cu-H2O nanofluids with different mass fraction and size were prepared through two-step method. Its thermal conductivities and the effect of Cu-HzO nanofluids on the efficiency of a flat-plate solar collector was investigated experimentally. Meanwhile, the water temperature and heat gain of the fiat-plate solar water heater were also investigated. The experimental results show that the thermal conductivities can enhanced observably. The efficiency of solar collector enhanced by 23.83% with using Cu-H2O nanofluids (25 nm, 0.10% ) as the absorbing medium. The effi ciency of Cu-H2O nanofluids (25 nm, 0.20% ) is lower than that of Cu-H2O nanofluids (25 nm, 0.10% ). The instantaneous efficiency of solar collector decreas with increasing nanoparticle size. The highest temperature and highest heat gain of water in the nanofiuid(25 nm, 0.10% ) tank can increased up to 12.24% and 24.52% compared with water, respectively.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2015年第3期562-567,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51246006) 广东高校热泵工程技术开发中心建设项目(KJZX-0058)
关键词 纳米流体 平板集热器 太阳能 集热效率 得热量 nanofluids flat-plate solar collector solar energy collecting efficiency heat gain
  • 相关文献

参考文献13

  • 1He Qinbo, Wang Shuangfeng, Tong Mingwei, et al. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage[J]. Energy Conversion and Management, 2012, 64: 199--205.
  • 2Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles [A ]. Developments and Applications of Non-Newtonian Flows [C], New York, American Society of Mechanical Engineers, 1995, 99--105.
  • 3Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041004.
  • 4Otanicar T P, Phelan P E, ['rasher R S, et al. Nanofluid-based direct absorption solar collector [J]. Journal of Renewable and Sustainable Energy, 2010, 2 (3): 033102.
  • 5Taylor R A, Phelan P E, Otanicar T P, et al. Nanofluid optieal property characterization: towards efficient direct absorption solar collectors [J]. Nanoseale Research Letters, 2011, 6(1): 225.
  • 6Sani E, Barison S, PaguraC, et al. Carbon nanohorns- based nanofluids as direct sunlight absorbers [J]. Optics Express, 2010, 18(5 ): 5179--5187.
  • 7Han Dongxiao, Meng Zhaoguo, Wu Daxiong, et al. Thermal properties of carbon black aqueous nanofluids for solar absorption[J]. Nanoscale Researeh Letters, 2011, 6(1): 457.
  • 8Mu Lijuan, Zhu Qunzhi, Si Leilei. Radiative properties of nanofluids and performance of a direct solar absorber using nanofluids [A]. Proceedings of the ASME 2009 2"' Micro/Nanoscale Heat & Mass Transfer international Conference[C], Shanghai, China, 2009, 1---5.
  • 9Yousefi T, Veysi F, Shojaeizadeh E, et al. An experimental investigation on the effect of A12()-H20 nanofluid on the efficiency of flat-plate solar collectors [J]. Renewable Energy, 2012, 39: 293--298.
  • 10Yousefi T, Veysi F, Shojaeizadeh E, et al. An experimental investigation on the effect of MWCNT-H20 nanofluid on the efficiency of flat-plate solar collector [J]. Experimental Thermal and Fluid Science, 2012, 39: 207--212.

同被引文献28

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部