期刊文献+

保序部分变换半群PO_n的平方幂等元 被引量:6

The quasi-idempotent of partial order-preserving transformation
下载PDF
导出
摘要 设POn是[n]上的保序部分变换半群.对n≥3,证明了半群POn的秩为n-1的平方幂等元的个数为4n-6,同时,还证明了半群POn是秩为n-1的平方幂等元生成的,且其秩为2n-1. Let POnbe the partial order-preserving semigroup on [n].It is shown that for n≥3,the number of quasi-idempotent of rank n-1of POnis 4n-6,at the same time,we also prove that the semigroup POnis quasi-idempotent generated,with the rank is 2n-1.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期6-11,共6页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11461014) 贵州省自然科学技术基金资助项目(黔科合J字[2007]2008号)
关键词 保序部分变换半群 幂等元 平方幂等元 平方幂等元秩 partial order-preserving transformation semigroup idempotent quasi-idempotent quasi-idempotent rank
  • 相关文献

参考文献9

  • 1GOMES G M S, HOWlE J M. On the ranks of certain semigroups of order-preserving transformations[J]. Semigroup Forum, 1992,45 : 272-282.
  • 2UMAR A. On the semigroup of partial one-one order-decreasing finite transformation[J]. Proc Roy Soc Edinburgh, 1993,123A:355-363.
  • 3MADU B A. Quasi-idempotents and quasi-nilpotents in finite transformations semigroups[M]. PhD thesis: Ahmadu Bello University Zaria, 1999 : 20-90.
  • 4MADU B A,GARBA G U. Guasi-idempotents in finite semigroups of order-preserving chains[J]. Research Journal of Science, 2001,7 : 61-64.
  • 5IMAM A T. Subsemigroups generated by quasi-idempotents in certain finite semigroups of mappings[M]. PhD thesis:Ahmadu Bello University Zaria, 2013 : 24-42.
  • 6HOWIE J M. Fundamentals of semigroup theory[M]. Oxford:Oxford University Press, 1995 : 341-343.
  • 7CLIFFORD H,PRESTON G B. The algebraic theory of semigroups, vol1[M]. Providence:Am Math Soe,1961 :xiii-XV.
  • 8罗永贵,瞿云云.半群PO_n中理想的非群元秩和相关秩[J].东北师大学报(自然科学版),2014,46(3):20-27. 被引量:5
  • 9李红香,游泰杰,赵平.保序变换半群O_n的平方幂等元[J].贵州师范大学学报(自然科学版),2014,32(1):48-50. 被引量:4

二级参考文献17

  • 1Umar A. d On the semigroup of partial one - one order - decreasing finite transformation [ J ]. Proc Roy Soc Edin- burgh, 1993,123A :355 - 363.
  • 2Madu B A, Quasi -idempotents and quasi -nilpotents in finite transformations semingroups [ D ]. Ahmadu Bello U- niversity Zaria, 1999.
  • 3Madu B A, Garba G U. Quasi - idempotents in finite sem- igroups of order - preserving charts [ J ]. Research Journal of Science,2001,7:61 -64.
  • 4Comes G M S, Howie J M. On the ranks of certain semig- roups of orde-preserving transformations [ J ]. Semigroup Forum, 1992,45:272 - 282.
  • 5Howie J M. Fundamentals of Semigroup Theory [ M ]. Ox- ford: Oxford University Press, 1995.
  • 6GOMES G M S. HOWIE 1 M. On the ranks of certain sernigroups of order-preserving transformations[J]. Semigroup Forum. 1992.45(1) :272-282.
  • 7GARBA G U. On the idempotent ranks of certain sernigroups of order-preserving transformations[J]. Portugaliae Mathernatica , 1994.51(2):185-204.
  • 8XIULIANG YANG. Non-group ranks in finite full transformation semigroups[J]. Semigroup Forum.1998.57 :42-47.
  • 9HOWIE 1 M. RUSKUC N. HIGGINS P M. On relative ranks of full transformation semigroups[J]. Communication in Algebra. 1998.26(3) :733-748.
  • 10ARA U10 1 ? SCHNEIDER C. The rank of the endomorphism monoid of a uniform partition[J]. Semigroup Forum. 2009. 78: 498-510.

共引文献7

同被引文献34

  • 1高荣海,徐波,曾吉文.定点保距部分一一变换半群(英文)[J].兰州大学学报(自然科学版),2018,54(6):836-840. 被引量:3
  • 2HaoBoYANG XiuLiangYANG.Maximal Subsemigroups of Finite Transformation Semigroups K(n,r)[J].Acta Mathematica Sinica,English Series,2004,20(3):475-482. 被引量:19
  • 3UMAR A.On the semigroup of partial one-one order-decreasing finite transformation[J].Proc Roy Soc Edinburgh,123A 1993:355-363.
  • 4MADU B A,GARBA G U.Quasi-idempotents in finite semigroups of order-preserving charts[J].Research Journal of Science,2001(7):61-64.
  • 5HOWIE J M.An introduction to semigroup theory[M].London:Academic Press,1976.
  • 6FERNANDES V H,GOMES G M S,JESUS M M.Congruences on monoids of order-preserving or order-reversing transformations on a finite chain[J].Glasgow Math J,2005(47):413-424.
  • 7IMAM A T. Subsemigroups generated by quasi-idempo- tents in certain finite semi-groups of mappings I D/OL~. Nigeria: Ahmadu Bello University Zaria ,2013.
  • 8MADU B A. Quasi-idempotents and quasi-nilpotents in fi- nite transformations semi - groups [ D/OL ]. Nigeria: Ah- madu Bello University Zaria, 1999.
  • 9HOWIE J M.The subsemigroup generated by the idempotents of a full transformation semigroup[J].J London Math Soc,1966,1(1):707-716.
  • 10KEARNES K A,SZENDREI A,WOOD J.Generating singular transformations[J].Semigroup Forum,2001,63(3):441-448.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部