期刊文献+

m序列压缩感知测量矩阵构造 被引量:17

Construction of the compressive sensing measurement matrix based on m sequences
下载PDF
导出
摘要 利用m序列,提出了一种新的确定性测量矩阵构造方法,称为m序列矩阵.在压缩感知理论中,spark定义为测量矩阵的最小线性相关列数,是一个重要的性能参数,利用m序列的相关特性,推导了所构造测量矩阵spark值的一个下界.仿真实验表明,该方式构造的测量矩阵的重建概率明显高于同条件下的高斯随机测量矩阵;一旦给定m序列,则能确定出所构造矩阵的每一个元素值,避免了随机矩阵的不确定性;所构造矩阵具有循环特性,易于硬件实现,克服了随机矩阵浪费存储资源的缺陷,具有实用价值. Sequence is an important pseudo random sequence with good correlation.A new method for the deterministic constructing compressive sensing measurement matrix is given through m sequences and called the m Sequence Matrix.In Compressive Sensing,the spark,the smallest number of linearly dependent columns in a matrix,is an important parameter to measure the performance of the measurement matrix.A lower bound of the spark of the proposed measurement matrix is given by considering its correlation.Besides,numbers of simulations show that the proposed matrix has much higher reconstruction probability than the corresponding Gaussian random measurement matrix.The elements of the proposed matrix are deterministic once the m sequence is given,which avoids the uncertainty of random matrices.And the proposed matrix with a perfect cyclic structure can make the hardware realization convenient and easy,which illiminates the storage space waste of random measurement matrices,thus having great potentials in practice.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第2期186-192,共7页 Journal of Xidian University
基金 武器装备预研基金资助项目(9140A25031112JB32001) 西安电子科技大学综合业务网理论及关键技术国家重点实验室开放研究课题资助项目(ISN15-13)
关键词 压缩感知 测量矩阵 M序列 SPARK compressive sensing measurement matrix m sequence spark
  • 相关文献

参考文献15

  • 1Candès E J,Romberg J,Tao T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information [J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 2Donoho D L.Compressed Sensing [J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 3邵文泽,韦志辉.压缩感知基本理论:回顾与展望[J].中国图象图形学报,2012,17(1):1-12. 被引量:68
  • 4Donoho D L,Elad M.Optimally Sparse Representation in General (Nonorthogonal) Dictionaries via l1 Minimization [J].Proceedings of the National Academy of Sciences,2003,100(5):2197-2202.
  • 5Candes E J,Tao T.Decoding by Linear Programming [J].IEEE Transactions on Information Theory,2005,51(12):4203-4215.
  • 6Candes E J,Tao T.Near-optimal Signal Recovery from Random Projections:Universal Encoding Strategies? [J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 7Dimakis A G,Smarandache R,Vontobel P O.LDPC Codes for Compressed Sensing [J].IEEE Transactions on Information Theory,2012,58(5):3093-3114.
  • 8Liu Xinji,Xia Shutao.Construction of Quasi-cyclic Measurement Matrices Based on Array Codes [C]//IEEE International Symposium on Information Theory Proceedings.Piscataway:IEEE,2013:479-483.
  • 9Yu L,Barbot J P,Zheng G,et al.Compressive Sensing with Chaotic Sequence [J].IEEE Signal Processing Letters,2010,17(8):731-734.
  • 10Chen S,Donoho D L,Saunders M A.Atomic Decomposition by Basis Pursuit [J].SIAM Journal of Scientific Computing,1998,20(1):33-61.

二级参考文献106

共引文献69

同被引文献86

  • 1翁健光,袁军堂,汪振华,夏亮亮.滚珠丝杠副静力学特性分析[J].制造技术与机床,2012(11):127-130. 被引量:3
  • 2张旭明,徐滨士,董世运.用于图像处理的自适应中值滤波[J].计算机辅助设计与图形学学报,2005,17(2):295-299. 被引量:159
  • 3韩敏,史志伟,郭伟.储备池状态空间重构与混沌时间序列预测[J].物理学报,2007,56(1):43-50. 被引量:23
  • 4史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 5CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 6DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 7CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 8BOURGAIN J, DILWORTH S, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145-185.
  • 9GAN H, LI Z, LI J, et al. Compressive sensing using chaotic sequence based on chebyshev map[J]. Nonlinear Dynamics, 2014, 78(4): 2429-2438.
  • 10CASTORENA J and CREUSERE C D. The restricted isometry property for banded random matrices[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 5073-5084.

引证文献17

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部