期刊文献+

小立碗藓对重金属镉胁迫的应答特征 被引量:7

Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network
原文传递
导出
摘要 镉是植物非必需的微量重金属元素,镉胁迫引起植物细胞的代谢紊乱,甚至导致细胞死亡。为了探索苔藓植物对镉胁迫的应答机制,采用高通量测序及生物信息学技术分析了藓类模式植物——小立碗藓(Physcomitrella patens)在镉胁迫下的基因表达特征。结果表明,在镉胁迫下,小立碗藓细胞骨架组织、微管运动、DNA修复系统、端粒维护、配子体形成与有性生殖以及与氮代谢等相关基因的表达具有明显的镉胁迫应答特征,暗示了这些基因可能共同参与小立碗藓对镉胁迫的调控反应。该研究结果为阐明植物对镉胁迫的应答机制提供了新的线索。 Cadmium is a non-essential heavy metal for plant growth. Cadmium stress causes cell metabolism distur- bance or death in plant. Here, we performed transcriptome analysis of Physcomitre/la patens during cadmium stress by RNA-Seq. We revealed a new transcriptional network of cadmium stress in plants. The functions of genes that were upregulated or downregulated under cadmium stress included microtubule-based movement, microtubule-based proc- essing, cytoskeleton organization, DNA replication, DNA metabolic process, telomere maintenance and organization, sexual reproduction, urea metabolic process, and nitrogen cycle metabolic process. These proteins may play roles in P. patens under cadmium stress. Our study provides new information for the further research of the molecular mechanisms of plant adaptation to cadmium stress.
出处 《植物学报》 CAS CSCD 北大核心 2015年第2期171-179,共9页 Chinese Bulletin of Botany
基金 转基因生物新品种培育重大专项(No.2013ZX08001003-008) 首都师范大学植物学国家重点学科
关键词 贝叶斯网络 镉胁迫 高通量测序 小立碗藓 调控机制 Bayesian network, cadmium stress, high-throughput sequencing, Physcomitrella patens, regulatory mechanism
  • 相关文献

参考文献37

  • 1Cabot C,Gallego B,Martos S,Barcelo J, Poschenrieder C(2013). Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 237, 337-349.
  • 2Chen YH, Yang XY, He K,Liu MH,Li JG, Gao ZF,Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL,Gu HY, Qu LJ (2006). The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60, 107-124.
  • 3Chmielowska-Bak J, Deckert J (2012). A common response to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing. J Cell Commun Signal 6, 191-204.
  • 4Chmielowska-Bak J,Deckert J (2013). Nitric oxide mediates Cd-dependent induction of signaling-associated genes. Plant Signal Behav 8, e26664.
  • 5Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014). The new insights into cadmium sensing. Front Plant Sci 5, 245.
  • 6Corradi MG, Gorbi G, Ricci A,Torelli A, Bassi M (1995). Chromium-induced sexual reproduction gives rise to a Cr-tolerant progeny in Scenedesmus acutus. Ecotoxicol Environ Saf 32, 12-18.
  • 7DalCorso G, Farinati S, Furini A (2010). Regulatory networks of cadmium stress in plants. Plant Signal Behav 5, 663-667.
  • 8Dovgalyuk A, Kalynyak T, Blume YB (2003). Heavy metals have a different action from aluminium in disrupting microtubules in Allium cepa meristematic cells. Cell Biol Int 27, 193-195.
  • 9Ercal N,Gurer-Orhan H, Aykin-Burns N (2001). Toxic metals and oxidative stress part I: mechanisms involvedin metal-induced oxidative damage. Curr Top Med Chem 1, 529-539.
  • 10Farinati S, DalCorso G, Varotto S,Furini A (2010). The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185, 964-978.

同被引文献130

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部