期刊文献+

两个包含Gamma函数的对数完全单调函数及其应用

Logarithmically complete monotonicity of two specific functions involving Gamma function and applications
下载PDF
导出
摘要 通过对两个包含Gamma函数的特殊函数的对数完全单调性的证明,给出了一个新的关于Γ(x+1)的不等式,由此给出了一个关于n!的新估计,并将该估计与已有文献结果进行了比较.最后,基于这个新估计,提出了一个关于n!的最佳不等式的猜想. In the article,the logarithmically complete monotonicity of two specific functions involving Gamma function was proved.Thus,a new inequality aboutΓ(x+1)was obtained.And then,a double inequality about factorial n was proposed and compared with the existing conclusions.Lastly,a best conjecture was made on the new estimate.
出处 《陕西科技大学学报(自然科学版)》 2015年第2期177-181,共5页 Journal of Shaanxi University of Science & Technology
基金 陕西省科技厅自然科学基金项目(2010JM1017)
关键词 GAMMA函数 对数完全单调性 N! Burnside公式 Gamma function logarithmically complete monotonicity factorial n Burnside′s formula
  • 相关文献

参考文献15

  • 1D. S. Mitrinovic, J. E. Pecaric, A. M. Fink. Classical and new inequalities in analysis[M]. Dordrecht/ Boston/Lon- don Kluwer Academic Publishers, 1993.
  • 2F. Qi. Generalized weighted mean values with two param eters[J]. Proceedings of the Royal Society A Mathemati- cal, Physical and Engineering Sciences, 1998, 454 (2) 2 723-2 732.
  • 3R. D. Atanassov, U. V. Tsoukrovski. Some properties of a class of logarithmically completely monotonic functions [J]. C. R. Aead. Bulgare Sci,1988,41(2) :21-23.
  • 4F. Qi, B. N. Guo. Complete monotonicities of functions in volving the gamma and digamma functions[J]. Rgmia Res. Rep,2004,7(1) : 63-72.
  • 5F. Qi,C. P. Chen. A complete monotonicity property of the gamma function[J]. Journal of Mathematical Analysis and Applications,2004,296(2) :603-607.
  • 6M. Abramowitz, I. A. Stegun. Handbook of mathematical functions with formulas,graphs,and mathematical tables, national bureau of standards [M]. Washington; National Bureau of Standards, 1965.
  • 7S. L. Guo. Monotonicty and concavity properties of some functions involving the gamma function with applications [J]. Journal of Inequalities in Pure and Applied Mathe matics,2006,7(2) :41-47.
  • 8N. Batir. Inequalities for the gamma function[J]. Archiv der Mathematik,2008,91(6) :554-563.
  • 9F. Qi,Z. L. Wei,Q. Yang. Generalizations and refinements of hermite-hadamardrs inequality[J]. Rocky Mountain Journal of Mathematics,2005,5(1) :235-251.
  • 10F. Qi. Complete monotonicity of a function involving the gamma function and applications[J]. Computational and Applied Mathematics,g014,69(2) :159-169.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部