期刊文献+

基于特征点匹配的自适应目标跟踪算法 被引量:4

An adaptive object tracking algorithm based on feature-points matching
下载PDF
导出
摘要 由于实际场景复杂多变,目标在运动过程中往往会出现形变、遮挡等问题,增加了跟踪的难度。为了解决上述问题,提出一种基于特征点匹配的自适应目标跟踪算法。算法初始化时在选定的目标区域内提取特征点,跟踪过程中通过对前后两帧的特征点进行匹配,计算出目标的位置、尺度和旋转变化,进而实现对目标的跟踪。同时通过对特征点的不断更新,可以使算法具有一定的抗遮挡能力。实验表明,该方法在实际应用中效果很好。 Due to the complexity of the actual scene, problems of deformation or occlusion always occur during the motion of objects and make tracking more difficult. For solving these problems, an adaptive object tracking algorithm based on feature-points matching is proposed. In initialization, we extract feature points of objects in the selected object area. Then we match the feature points between the two successive frames, and evaluate the change in position, scale and rotation of objects for tracking. Moreover constantly updating feature points can make the method robust while objects are occluded. The experiments prove that the proposed method is effective in actual scene.
作者 刘静寒 钟辉
出处 《微型机与应用》 2015年第8期17-19,共3页 Microcomputer & Its Applications
关键词 特征点匹配 自适应目标跟踪 尺度变化 旋转 feature points matching adaptive object tracking scale variation rotation
  • 相关文献

参考文献9

  • 1高韬,刘正光,张军,岳士弘.基于特征点的多运动目标跟踪[J].电子与信息学报,2010,32(5):1111-1115. 被引量:13
  • 2NEBEHAY G, PFLUGFELDER R. Consensus-based match- ing and tracking of keypoints for object tracking [C]. Winter Conference on Applications of Computer Vision, 2014: 862-869.
  • 3HARRIS C, STEPHENS M. A combined comer and edge detector [A]. Proceedings of the 4th Alvey Vision Conference[C]. Manchester, UK, 1988:147-151.
  • 4LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 5ROSTEN E, DRUMMOND T. Machine learning for high- speed corner detection [C]. European Conference on Com- puter Vision, 2006:430-443.
  • 6LEUTENEGGER S, CHLI M, SIEGWART R. Brisk: bina- ry robust invariant scalable keypoints [C].Computer Vision- ICCV,2011 : 2548-2555.
  • 7王露露,张洪,高忠国.基于SURF的目标跟踪算法[J].江南大学学报(自然科学版),2012,11(5):515-518. 被引量:4
  • 8梅振顺,战荫伟,钟左峰.基于SURF特征的目标跟踪[J].中国体视学与图像分析,2011,16(1):28-32. 被引量:8
  • 9Song Yi, Li Shuxiao, Chang Hongxing. Scale adaptive mean shift tracking based on feature point matching[C]. 2013 Second IAPR Asian Conference on Pattern Recogni- tion, 2013:220-224.

二级参考文献30

  • 1王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 2Betke M,Haritaoglu E,and Davis L S.Real-time multiple vehicle detection and tracking from a moving vehicle[J].Machine Vision and Applications,2000,12(2):69-83.
  • 3Lin Ming-xiu and Xu Xin-he.Multiple vehicle visual tracking from a moving vehicle[C].Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications,Jinan,China,2006,2:373-378.
  • 4Lin Shin-ping,Chen Yuan-hsin,and Wu Bing-fei.Real-time multiple vehicle detection and tracking system with prior occlusion detection and resolution,and prior queue detection and resolution[C].Proceedings of 18th International Conference on Pattern Recognition(ICPR),Hong Kong,2006,1:828-831.
  • 5Jin Yong-gang and Mokhtarian F.Variational particle filter for multi-object tracking[C].Proceedings of IEEE 11th International Conference on Computer Vision (ICCV),Rio de Janeiro,Brazil,2007:1-8.
  • 6Pinkiewicz T,Williams R,and Purser J.Application of the particle filter to tracking of fish in aquaculture research[C].Proceedings of Digital Image Computing:Techniques and Applications (DICTA),Canberra,2008:457-464.
  • 7Gao Tao and Liu Zheng-guang.Moving video object segmentation based on redundant wavelet transform[C].Proceedings of the IEEE International Conference on Information and Automation,Zhangjiajie,China,2008:156-160.
  • 8Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9Nummiaro K.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110.
  • 10Reckleitis I.A particle filter tutorial for mobile robot localization[C].Proceedings of the IEEE International Conference on Robotics and Automation,Taipei,Taiwan,2003,42:1-36.

共引文献22

同被引文献37

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部