期刊文献+

Hadoop框架下的多标签传播算法 被引量:1

A Label Propagation Algorithm for Multi-Label Classification Using Hadoop Technology
下载PDF
导出
摘要 标签传播算法的主要思想是利用已标注数据的标签信息预测未标注数据的标签信息。然而,传统传播算法没有区别对待未标注数据与已标注数据相互之间的转移信息,导致算法的收敛速度较慢,影响了算法的性能。针对传统算法的不足,提出了差异权重标签传播算法,算法按标注信息的重要性赋予不同的权重。在解决了大规模特征矩阵相乘问题之后,将提出的差异权重标签传播算法应用到Hadoop框架下,采用分布式计算,实现了能够处理大规模数据的多标签分类算法(HSML),并将提出的HSML算法与现有主流多标签分类算法进行了性能比较。实验结果表明,HSML算法在多标签分类的各项性能评测指标和执行速度上都是有效的。 A method of label propagation using Hadoop technology,named HSML,is proposed,to cope with the challenge of exponential-sized output space learning from multi-label data.Label propagation algorithms are graph-based semi-supervised learning methods,and use the label information of labeled data to predict the label information of unlabeled data.Traditional label propagation algorithms do not consider the posterior probability and distinguish information between labeled data and unlabeled data during the label propagation process,hence,the performance of traditional label propagation algorithms is affected. Therefore, a label propagation algorithm with different weights is proposed.After the multiplication problem of large-scale feature matrices is solved,the proposed algorithm is applied to the framework of Hadoop to deal with the problem of multi-label classification learning from big data.Experimental results and comparisons with some well-established multi-label learning algorithms,show that the performance of HSML is superior,and that the bigger test set is the faster HSML runs.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第5期134-139,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61202184 61100166) 陕西省教育厅资助项目(2013JK1152)
关键词 HADOOP 多标签分类 标签传播算法 Hadoop multi-label classification label propagation algorithm
  • 相关文献

参考文献14

  • 1ZHANG Minling,ZHOU Zhihua.A review on multilabel learning algorithms[J].IEEE Transactions on Knowledge&Data Engineering,2014,26(8):1-59.
  • 2XU Miao,LI Yufeng,ZHOU Zhihua.Multi-label learning with pro loss[C]∥Proceedings of the 27th AAAI Conference on Artificial Intelligence.Palo Alto,California,USA:AAAI,2013:998-1004.
  • 3SUN Y Y,ZHANG Y,ZHOU Z H.Multi-label learning with weak label[C]∥24th AAAI Conference on Artificial Intelligence.Palo Alto,California,USA:AAAI,2010:593-598.
  • 4孔祥南,黎铭,姜远,周志华.一种针对弱标记的直推式多标记分类方法[J].计算机研究与发展,2010,47(8):1392-1399. 被引量:13
  • 5BOUTELL M R,LUO J,SHEN X,et al.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771.
  • 6TSOUMAKAS G,VLAHAVAS I.Random k-labelsets:an ensemble method for multilabel classification[C]∥18th European Conference on Machine Learning.Berlin,Germany:Springer,2007:406-417.
  • 7ZHANG Minling,ZHOU Zhihua.ML-kNN:a lazy learning approach to multi-label learning[J].Pattern Recognition,2007,40(7):2038-2048.
  • 8ZHANG Minling,ZHOU Zhihua.Multilabel neural networks with applications to functional genomics and text categorization[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351.
  • 9ELISSEEFF A,WESTON J.A kernel method for multi-labelled classification[C]∥Advances in Neural Information Processing Systems.Cambridge,MA,USA:MIT,2002:681-687.
  • 10ZHU X J,GHAHRAMANI Z.Learning from labeled and unlabeled data with label propagation,CMUCALD-02-107[R].Pittsburghers,USA:Carnegie Mellon University,2002.

二级参考文献16

  • 1Schapire R E,Singer Y.Boostexter:A boosting-based system for text categorization[J].Machine Learning,2000,39(2/3):135-168.
  • 2Elisseeff A,Weston J.A kernel method for multi-labelled classification[C] //Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002:681-687.
  • 3Zhang M -L,Zhou Z -H.Ml-kNN:A lazy learning approach to multi-label learning[J].Pattern Recognition,2007,40(7):2038-2048.
  • 4Zhang M -L,Zhou Z -H.Multi-label neural networks with applications to functional genomics and text categorization[J].IEEE Trans on Knowledge and Data Engineering,2006,18(10):1338-1351.
  • 5周志华,张敏灵,黄圣君,等.MIML:一种从歧义对象中学习的框架,0808.3231[R].南京:南京大学软件新技术国家重点实验室,2008.
  • 6Comite F D,Gilleron R,Tommasi M.Learning multi-label alternating decision tree from texts and data[C] //Proc of the 3rd Int Conf on Machine Learning and Data Mining in Pattern Recognition.Berlin:Springer,2003:35-49.
  • 7Gao S,Wu W,Lee C -H,et al.A MFoM learning approach to robust multiclass multi-label text categorization[C] //Proc of the 21st Int Conf on Machine Learning.New York:ACM,2004:329-336.
  • 8Kazawa H,Izumitani T,Taira H,et al.Maximal margin labeling for multi-topic text categorization[C] //Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2005:649-656.
  • 9McCallum A.Multi-label text classification with a mixture model trained by EM[C] //Working Notes of the AAAI'99 Workshop on Text Learning.Menlo Park,CA:AAAI,1999:1-7.
  • 10Boutell M R,Luo J,Shen X,Brown C M.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771.

共引文献18

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部