期刊文献+

Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters 被引量:1

Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters
下载PDF
导出
摘要 We study the one-dimensional asymmetric simple exclusion process (ASEP) with generic open boundaries (in- cluding current-counting deformation), and obtain the exact solutions of this ASEP via the off-diagonal Bethe ansatz method. In particular, numerical results for the small size asymmetric simple exclusion process indicate that the spectrum obtained by the Bethe ansatz equations is complete. Moreover, we present the eigenvalue of the totally asymmetric exclusion process and the corresponding Bethe ansatz equations. We study the one-dimensional asymmetric simple exclusion process (ASEP) with generic open boundaries (in- cluding current-counting deformation), and obtain the exact solutions of this ASEP via the off-diagonal Bethe ansatz method. In particular, numerical results for the small size asymmetric simple exclusion process indicate that the spectrum obtained by the Bethe ansatz equations is complete. Moreover, we present the eigenvalue of the totally asymmetric exclusion process and the corresponding Bethe ansatz equations.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第5期27-30,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 11375141,11475135,11434013 and 11425522 the Ministry of Education Doctoral Program Fund under Grant No 20126101110004 the Northwest University Graduate Student Innovation Fund under Grant No YZZ14104
  • 相关文献

参考文献27

  • 1De Gier J and Essler F H L 2005 Phys. Rev. Lett. 95 240601.
  • 2Derrida B 2007 J. Stat. Mech. 2007 P07023.
  • 3Sellitto M 2008 Phys. Rev. Lett. 101 048301.
  • 4Jiang R, Wang Y Q, Kolomeisky A B, Huang W, Hu M B and Wu Q S 2013 Phys. Rev. E 87 012107.
  • 5MacDonald C T, Gibbs J H and Pipkin A C 1968 Biopolymers 6 1.
  • 6Ciandrini L, Stansfield I and Romano M C 2010 Phys. Rev. E 81 051904.
  • 7Gorissen M, Lazarescu A, Mallick K and Vanderzande C 2012 Phys. Rev. Lett. 109 170601.
  • 8Neri I, Kern N and Parmeggiani A 2011 Phys. Rev. Lett. 107 068702.
  • 9Raguin A, Parmeggiani A and Kern N 2013 Phys. Rev. E 88 042104.
  • 10Huang D W 2005 Phys. Rev. E 72 016102.

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部