期刊文献+

引外接地装置连接线的均压优化措施 被引量:9

Measures for Optimized Voltage Blance Along Connection Line to External Grounding Device
下载PDF
导出
摘要 当引外接地体距主接地网较远时,其与主接地网的连线可能会对接地系统的整体接地电阻及沿线的跨步电位差等产生影响。基于电磁场数值计算方法建立接地网及引外接地的分析模型,通过仿真计算,研究连接线材质、数量、埋深等对接地电阻、跨步电位差等的影响。由计算结果可知,连接线导电性越好、埋设越深、数量越多、则连接线附近的跨步电位差越低;当连接线的间距与其埋深一致时,连接线附近的跨步电位差最低;采用绝缘线作为连接线并不能有效降低其附近的跨步电位差。当土壤电阻率较高时,建议使用铜材连接引外接地网,连接线埋深和间距均以1 m为宜。研究结果为有效选择引外接地连接方式、保障人员安全提供了技术参考。 When the external grounding device is far away from the main grounding grid, the connection line to the main grounding grid may affect the overall grounding resistance and the step voltage along it. So we set up a model of the ex- ternal grounding device and the main grounding grid based on the electromagnetic numerical method. Then, we simulated the effects of the material, quantity, and depth of the connection line on the grounding resistance and step voltage. It can be seen that the better electrical conductivity, the more number, the greater depth of the connection line, and the lower the step potential will be. The minimum step voltage can be achieved if the distance between two connection lines is equal to the depth of them. Using insulated wires as the connection lines cannot reduce the step voltage near them. If the resistivity of the soil is high, it is suggested that the copper conductors should be used with the depth of 1 m and the space of 1 m. The research results provide a technical reference for selection of connection mode of the external grounding device to guarantee personal safety.
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第5期1589-1594,共6页 High Voltage Engineering
基金 国家自然科学基金(51277107)~~
关键词 接地 接地电阻 引外接地极 跨步电位差 变电站 均压措施 grounding grounding resistance external grounding device step voltage substation measurement for voltage blance
  • 相关文献

参考文献21

二级参考文献237

共引文献521

同被引文献87

  • 1胡俊,聂在平,王军,邹光先,胡颉.三维电大目标散射求解的多层快速多极子方法[J].电波科学学报,2004,19(5):509-514. 被引量:75
  • 2鲁志伟,常树生,东方,周秧.引外接地对降低接地网接地阻抗的作用分析[J].高电压技术,2006,32(6):119-121. 被引量:18
  • 3李景禄,郑瑞臣.关于接地工程中若干问题的分析和探讨[J].高电压技术,2006,32(6):122-124. 被引量:70
  • 4Nagamoto K, Kuwabara N, Kawabata M. Calculation of emitted mag- netic field using wire grid model considering dielectric material of VVF cable[C]//2008 International Symposium on Electromagnetic Compatibility-- EMC Europe. Hamburg, Germany: [s. n.], 2008: 1-6.
  • 5Li J, Li L. Characterizing scattering by 3D arbitrarily shaped homoge- neous dielectric objects using fast multipole method[J]. Antennas and Wireless Propagation Letters, 2004, 3(1): 1-4.
  • 6Landesa L, Taboada M. High scalability codes for the fast multipole method[C]//2007 the Second European Conference on Antennas and Propagation. Edinburgh, British: [s. n.], 2007: 1-4.
  • 7Oguni N, Aasai H. Estimation of parallel FDTD-based electromagnetic field solver on PC cluster with multi-core CPUs[C]//2008 Electrical Design of Advanced Packaging and Systems Symposium. Seoul, Ko-rea: [s. n.], 2008: 159-162.
  • 8Davalbhakta A, Mahajan M. Measurement of resistance of a grounding grid model using magnetic field sensors[C]//2008 40th Southeastern Symposium on System Theory. New Orleans, USA: [s. n.], 2008: 174-177.
  • 9Daily K, Dawalibi F. Measurements and computations of electromag- netic fields in electric power substations[J]. IEEE Transactions on Power Delivery, 1994, 9(1): 324-333.
  • 10Dawalibi F. Electromagnetic fields generated by overhead and buried short conductors, part 2: ground networks[J]. IEEE Transactions on Power Delivery, 1986, 1(4): 112-119.

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部