期刊文献+

铝掺杂对富锂正极材料结构及电化学性能影响 被引量:2

Effects of aluminum doping on structure and electrochemical performance of lithium rich cathode materials
下载PDF
导出
摘要 采用共沉淀-高温烧结法制备富锂正极材料Li[Li0.20Ni0.20-x/2Mn0.60-x/2]AlxO2(x=0,0.03,0.06,0.09),考察掺铝量对材料结构及电化学性能的影响。采用X射线衍射(XRD)、透射电镜(TEM)和能谱(EDS)研究材料晶体结构和元素分布,交流阻抗及电池充放电测试电化学性能。结果表明,铝首先选择固溶在Li2Mn O3中,然后固溶在Li MO2中;掺杂铝导致材料常温下容量显著降低,高温下得到很高的可逆容量;掺杂铝2.5%(质量分数)可以极大提高材料容量保持率,并显著降低首次不可逆容量。 Lithium-rich materials Li[Li0.20Ni0.20-x/2Mn0.60-x/2]AlxO2(x=0,0.03,0.06,0.09) were prepared by co-precipitation method. Effects of Aluminum doping on the structure and electrochemical performance were studied. The structure, distribution of aluminum on particle and electrochemical performance were characterized by XRD, TEM, EDS, EIS and galvanostaUc cycling. The results show that aluminum is substituted firstly in Li2MnO3 then in LiMO2. The discharge capacity of Li-rich material with doping aluminum dramatically decreases at 25 ℃, but high capacity is obtained at 45℃. With doping 2.5% of aluminum, the capacity retention is significantly improved, and the initial irreversible capacity can be significantly decreased.
出处 《电源技术》 CAS CSCD 北大核心 2015年第6期1203-1206,共4页 Chinese Journal of Power Sources
基金 校企研究资助项目(KKZ4200730010)
关键词 富锂正极材料 AL掺杂 电化学性能 lithium rich cathode material aluminum doping electrochemical properties
  • 相关文献

参考文献12

  • 1PARK Y J, HONG Y S, WU X L, et al. Structural investigation and electrochemical behaviour of Li[Ni~Li(v3 2~3~IVln(z3-~3)]O2 com- pounds by a simple combustion method [J]. Journal of Power Sources, 2004(129): 288-295.
  • 2KIM J S, JOHNSON C S, VAUGHEY J T, et al. Electrochemical and structural properties of xLi2M' O3 "(1 -x)LiMn05Ni0502 elec- trodes for lithium batteries (M' =Ti, Mn, Zr; 0 ~<x~<0.3)[J]. Chem Mater, 2004, 16: 1996-2006.
  • 3JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the LizMnO3 component in composite xLi2MnO3 (1 -x)LiMn0~Ni,50~ electrodes[J]. Electrochemistry Communications, 2004 (6): 1085- 1091.
  • 4HY S, SU W N, CHEN J M, et al. Soft X-ray absorption spec- troscopic and raman studies on Li~.zNi02Mno60~ for lithium-ion bat- teries[J]. Phys Chem C, 2012, 116: 25242-25247.
  • 5KARTHIKEYANA K, AMARESHA S, LEEA G W, et al. Elec- trochemical performance of cobalt fi'ee, Lit.z (Mn0.32Ni03zFe0.L6)Oz cathodes for lithium batteries[J]. Electrochimica Acta, 2012(68): 246-253.
  • 6SHI S J, TU J P, TANG Y Y, et al. Combustion synthesis and electrochemical performance of Li[Lio2Mrlo.5,Ni0.13Co0A3]Oz with im- proved rate capability[J]. Journal of Power Sources, 2013 (228): 14-23.
  • 7杜柯,黄霞,杨菲,胡国荣,彭忠东.锂离子电池正极材料Li[Li_(0.2)Ni_(0.2)Mn_(0.6)]O_2的酸浸改性研究[J].无机化学学报,2012,28(5):983-988. 被引量:6
  • 8BETTGE M, LI Y, SANKARANM B, et al. Improving high-ca- pacity LiL2Ni0.1sMn0.ssCo0.102-based lithium-ion cells by modifying the positive electrode with alumina [J]. Journal of Power Sources, 2013(233): 346-357.
  • 9XIA Y J, HIDESHIMA Y, KUMADA N, et al. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries part V: enhancement of the elevated temperature performance of Li/LiMn204 cells [J]. Journal of Power Sources, 1998(24): 24-28.
  • 10TU J, ZHAO X B, CAO G S, et al. Enhanced cycling stability of LiMn204 by surface modification with melting impregnation method[J]. Electrochimica Acta, 2006(51):6456-6462.

二级参考文献40

  • 1庄全超,陈作锋,董全峰,姜艳霞,周志有,孙世刚.锂离子电池电解液中甲醇杂质对石墨电极性能影响机制的电化学阻抗谱研究[J].高等学校化学学报,2005,26(11):2073-2076. 被引量:18
  • 2KIM S H,KIM S J, NAHM K S,et al. Synthesis of Li2MnO3-like electrode materials by reaction in solutions [J]. Jurnal of Alloys Compounds, 2008,449( 1/2): 339-342.
  • 3ZHENG J M, WU X B, YANG Y. A comparison of preparation method on the electrochemical performance of cathode material Li- [Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery [J]. Electrochimica Acta, 2011.56(8): 3071-3078.
  • 4LI J, KLOPSCH R, STAN M C, et al. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16- Co0.08]O2 with improved rate capability[J]. Journal of Power Sources, 2011,196(10): 4821-4825.
  • 5ITO A,LI D, SATO Y,et al. Cyclic deterioration and its improve- ment for Li-rich layered cathode material Li [Ni0.17TLi0.2Co0.07Mn0.56]O2 [J]. J Power Sources, 2010, 195(2): 567-573.
  • 6YU L Y, QIU W H, HUANG J Y, et al. Synthesis and electrochemi- cal characteristics of x Li2MnO3 · (1 - x)Li - (Ni1/3Co1/3Mn1/3)O2 com- pounds[J]. Int J Miner Metal Mater, 2009, 16(4): 458-462.
  • 7PRAMANIK A, GHANTY C, MAJUMDER S B. Synthesis and electrochemical characterization of xLi(Ni0.8Co0.15Mg0.05)O2-( 1 - x)Li- [Li1/3Mn2/3]O2(0.0 ≤ x≤1.0) cathodes for Li rechargeable batteries[J] Solid State Sciences, 2010, 12(10): 1797-1802.
  • 8KANG S H, THACKERAY M M. Enhancing the rate capability of high capacity x Li2MnO3·(1 - x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment[J]. Electrochem Commun, 2009, 11 (4): 748- 751.
  • 9LIM J H, BANG H, LEE K S, et al. Electrochemical characterization of Li2MnO3-Li [Ni1/3Co1/3Mn1/3]O2- LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. J Power Sources 2009, 189(35): 571-575.
  • 10GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13- Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochem Commun, 2009, 11 (1) 84-86.

共引文献122

同被引文献154

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部