期刊文献+

多频段时域分解的行为识别特征优选方法 被引量:6

Feature selection method for mobile user behavior recognition based on multiband time domain decomposition
下载PDF
导出
摘要 为了降低外界环境对移动用户行为识别的影响,保留行为敏感特征、提高行为识别的准确率,提出了一种多频段时域分解的人体行为识别特征优选方法。该方法对行为样本数据进行多频段分解,计算样本数据在不同频段信号的特征,利用遗传算法以决策树作为分类器进行特征优选,在多组特征中搜索出近似最优的特征组合。实验结果表明,该方法优选出的特征组合能有效提高行为识别的准确率。 In order to reduce the influence of the external environment to mobile user behavior recognition, select the sensitive features, and improve the accuracy of behavior recognition, this paper proposed an acceleration signal feature selection method to mobile user behavior recognition based on multiband time domain decomposition. In the method, it firstly decomposed the sample data to different time domain components. Then it computed the features of the different time domain components. Finally, it used the genetic algorithm and the decision tree as a classifier to choose the feature set which was sensitive to the human' s behaviors . Experiment results show that the multiband time domain decomposition feature optimization method can improve the accuracy of human behavior recognition effectively.
作者 王忠民 王斌
出处 《计算机应用研究》 CSCD 北大核心 2015年第7期1956-1958,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61373166) 陕西省工业攻关项目(2012K06-05 2012NKC01-15) 陕西省教育厅产业化培育项目(2012JC22)
关键词 多频段时域分解 行为识别 特征优选 遗传算法 决策树 multiband time domain decomposition behavior recognition feature optimization genetic algorithm decision tree
  • 引文网络
  • 相关文献

参考文献16

二级参考文献105

  • 1孙国菊,张杰.中文文本分类的特征选取评价[J].哈尔滨理工大学学报,2005,10(1):76-78. 被引量:14
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 4LIU Huan, SETIONO R. A probabilistic approach to feature selection: a filter solution [ C ]//Proc of the 13th International Conf Machine Learning. 1996:319-327.
  • 5HALL M A. Correlation-based feature selection for discrete and numeric class machine learning [ C ]//Proc of the 17th International Conf Machine Learning. 2000:359-366.
  • 6PAWLAK Z. Rough sets:theoretical aspects of reasoning about data [ M ]. Boston : Kluwer Academic Publishers, 1991.
  • 7JENSEN R, SHEN Qiang. Fuzzy-rough attribute reduction with application to Web categorization [ J ]. Fuzzy Sets and Systems, 2004, 141 (3) :469-485.
  • 8JENSEN R, SHEN Q. Fuzzy-rough sets assisted attribute reduction [J]. IEEE Trans on Fuzzy Systems,2007,15( 1 ) :73-89.
  • 9BHATT R B, GOPAL M. On fuzzy-rough sets approach to feature selection[J]. Pattern Recognition Letters,2005,26(7):965-975.
  • 10HU Qing-hua, YU Da-ren, XIE Zong-xia. Information-preserving hybrid data reduction based on fuzzy-rough techniques [ J]. Pattern Recognition Letters,2006,27(5 ) :414-423.

共引文献241

同被引文献33

  • 1INCEL O D,KOSE M,ERSOY C.A Review and Taxonomy of Activity Recognition on Mobile Phones[J].BioNanoSci,2013(3):145-171.DOI:10.1007/s12668-013-0088-3.
  • 2PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.DOI:10.1109/TKDE.2009.191.
  • 3JUSSI P,JAYAPRASAD B,JUSSI C,et al.Adaptive Activity and Environment Recognition for Mobile Phones[J].Sensors,2014,14:20753-20778.DOI:10.3390/s141120753.
  • 4ZHAO Z T,CHEN Y Q,LIU J F,et al.Cross-People Mobile-Phone Based Activity Recognition[C]//Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.California:AAAI Press,2011:2545-2550.DOI:10.5591/978-1-57735-516-8/IJCAI11-423.
  • 5JAIN A K,MURTY M N,FLYNN P J.Data clustering:A review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 6ZHANG T,RAMAKRISHNAN R,LIVNY M.Birch:An efficient data clustering method for very large databases[C]//Proceedings of the 1996 ACM SIGMOD International Conference on management of Data.Montreal:ACM Press,1996:103-114.
  • 7Zhang B,De Natale F G B,Conci N.Recogition of social interactions based on feature selection from visual codebooks[C]//Image Processing,2013 20th IEEE International Conference on,2013:3557-3561.
  • 8CHEN Yiqiang,ZHAO Zhongtang,WANG Shuangquan and CHEN Zhenyu.Extreme Learning Machine based device displacement free activity recognition model[J].Soft Computing.Volume 16,Issue 9:1617-1625.Springer-verlag 2012.
  • 9LI H P,ZHANG F,ZHANG S W.Multi-feature hierarchical topic models for human behavior recognition[J/OL].Science China Information Sciences,2014,57(9):1-15[2016-03-10].http://dx.doi.org/10.1007/s11432-013-4794-9.
  • 10SONG W,LIU N,YANG G.A Novel Human Action Recognition Algorithm Based on Decision Level Multi-Feature Fusion[J/OL].China Communications,2015(S2):93-102[2016-03-10].http://en.cnki.com.cn/Article_en/CJFDTotal-ZGTO2015S2012.htm.

引证文献6

二级引证文献16

;
使用帮助 返回顶部