期刊文献+

反场构形的传输过程 被引量:3

Translation process of field reversed configuration
原文传递
导出
摘要 介于惯性约束聚变与磁约束聚变之间的磁化靶聚变技术,可能是一种实现纯聚变更低廉更有效的途径.磁化靶聚变一般分为三个过程:形成过程、传输过程和内爆压缩过程.利用二维磁流体力学模拟程序MPF-2D,对反场构形的传输过程进行了理论研究.结果显示,反场构形在传输过程中必须外加适当的磁场,使得其内外磁压平衡,才能维持其拓扑结构并进行稳定的传输.还对初始磁压、传输磁场以及线圈间隙对反场构形传输过程的影响进行了详细的分析. Magnetized target fusion (MTF) is an alternative approach to fusion between traditional inertial confinement fusion and magnetic confinement fusion. It involves three processes: the formation of target plasma, the translation of target plasma, and compression process of implosion. In this paper, the translation process is studied with a two-dimensional magneto-hydrodynamic code MPF-2D, and the result shows that it is necessary to add a proper magnetic field in the translation process of field reversed configuration in order to maintain its topological structure. The effects of initial magnetic pressure, translation magnetic field, and the gap between coils are studied in detail.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第12期312-317,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11105005 11175026 11175028)资助的课题~~
关键词 磁化靶聚变 反场构形 二维磁流体力学 magnetized target fusion, field reversed configuration, two-dimensional magneto-hydrodynamic
  • 引文网络
  • 相关文献

参考文献21

  • 1Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Pape S L, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343.
  • 2Zaripov M M, Khaybullin I B, Shtyrkov E I 1976 Sov. Phys. Usp. 19 1032.
  • 3Lindemuth I R, Kirkpatrick R C 1983 Nucl. Fusion 23 263.
  • 4Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J 2003 Rev. Sci. Instrum. 74 4314.
  • 5Intrator T P, Siemon R E, Sieck P E 2008 Phys. Plasmas 15 042505.
  • 6Green T S 1960 Phys. Rev. Lett. 5 297.
  • 7Wright J K, Phillips N J 1960 J. Nucl. Energy Part C 1 240.
  • 8Binderbauer M W, Guo H Y, Tuszewski M, et al. 2010 Phys. Rev. Lett. 105 045003.
  • 9Yamada M, Ono Y, Hayakawa A, Katsurai M 1990 Phys. Rev. Lett. 65 721.
  • 10Slough J T, Miller K E 2000 Phys. Rev. Lett. 85 1444.

二级参考文献61

  • 1Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Ass- mus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K E Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J, Grabowski C, Ruden E L, Degnan J H, Cavazos T, Gale D G, Sommars W 2003 Rev. Sci. Instr. 74 4314.
  • 2Degnan J H, Amdahl D J, Brown A, Cavazos T, Coffey S K, Domonkos M T, Frese M H, Frese S D, Gale D G, Grabowski T C, Intrator T P, Kirkpatrick R C, Kiuttu G F, Lehr F M, Letterio J D, Parker J V, Pe- terkin R E, Roderick N F, Ruden E L, Siemon R E, Sommars W, Tucker W, Turchi P J ,Wurden G A 2008 IEEE Trans. Plas. Sci. 36 80.
  • 3Gotchev O V, Knauer J P, Chang P Y, Jang N W, Shaupm M J, Megerhofer D D, Betti R 2009 Rev. Sci. Instr. 80 043504.
  • 4Lynn A G, Merritt E, Gilmore M, Hsu S C, Witherspoon F D, Cassibry J T 2010 Rev. Sci. Instr. 81 10Ell5.
  • 5Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303.
  • 6Stephen A S, Roger A V 2012 Phys. Rev. Lett. 108 025003.
  • 7Finn J M, Sudan R N 1982 Nucl. Fusion 22 1443.
  • 8Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068.
  • 9Siemon R E, Armstrong W T, Bartsch R R 1983 Plasma Physics and Controlled Nuclear Fusion Research (Vol. 2) (Vienna: IAEA) p283.
  • 10I Intrator T, Zhang S Y, Degnan J H, Furno I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski W, Waganaar W J, Wurden G A 2004 Phys. Plasmas 11 2580.

共引文献15

同被引文献10

引证文献3

二级引证文献10

;
使用帮助 返回顶部