期刊文献+

BP神经网络在大坝位移监测中的应用 被引量:5

Application of BP Neural Network in Monitoring Dam Displacement
下载PDF
导出
摘要 利用BP神经网络模型较强的非线性处理能力特性,以水位、温度和时效作为输入层,大坝位移为输出层,建立BP神经网络模型对龙滩大坝的位移监测数据进行模拟和预测,并将拟合值、预报值和实测值进行对比分析,结果表明:BP神经网络模型对大坝位移拟合效果较好,预报值精度较高,具有一定的参考应用价值。 BP neural network model has strong nonlinear processing capacity. In this paper, taking water level, temper- ature and aging as the input layer, and the dam displacement as the output layer, a BP neural network model is developed for simulating and forecasting the displacement monitoring data of Longtan dam. A comparative analysis is made on the fitted values, forecasting values and the measured values. The results show that the model has good effect on simulating dam displacement and has high precision in forecasting, which can be well referenced by similar projects.
作者 黄华坚
机构地区 龙滩水力发电厂
出处 《红水河》 2015年第3期87-89,共3页 Hongshui River
关键词 BP神经网络 大坝 位移监测 BP neural network dam displacement monitoring
  • 相关文献

参考文献4

二级参考文献20

  • 1陈天平.神经网络及其在系统识别应用中的逼近问题[J].中国科学(A辑),1994,24(1):1-7. 被引量:50
  • 2董聪,郦正能,夏人伟,何庆芝.多层前向网络研究进展及若干问题[J].力学进展,1995,25(2):186-196. 被引量:47
  • 3夏富洲,王长德.面板堆石坝沉降变形预测的神经网络方法[J].武汉大学学报(工学版),2005,38(6):24-27. 被引量:2
  • 4[3]Kennecly M,Pchua L O. Neural networks for nonlinear programming[J]. IEE E,Trans,Circuits,1988,35:554-562.
  • 5[4]Aribshahi P. Fuzzy control of backpropagation[A]. IEEE Fuzzy’96,1996.96 7-972.
  • 6[5]Derrick H,Widrow B. Neural networks for self-learning control system[J ]. IEEE Control Systems Mangzine,1990,4(1):18-23.
  • 7[6]Khalid M,Omatu S. A neural network based control scheme with an adaptive neural model reference structure[A]. IJCNN,Singapore,1991.2128-2133.
  • 8[7]Wilis N J. Artificial neural networks in process estimation and control[ J]. Automatica,1992,28:1181-1187.
  • 9[8]Luo Li,Luo Qiang,Hu Shouren. A high-speed learning algorithm for BP ne ural networks[A]. International Conference on Neural Networks and Signal Proce ssing(Vol.1)[C]. ICNNSP’95, Nanjing,1995.202-205.
  • 10[9]Aoki K,Kanezashi M. Learning algorithm for neural networks by solv ing nonlinear equations[A]. Japan:Proc of ANNPS’93,1993,461-466.

共引文献180

同被引文献45

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部