期刊文献+

空间分数阶扩散方程的谱及拟谱方法

Spectral and Psedo-Spectral Method for Space Fractional Diffusion Equations
原文传递
导出
摘要 本文研究了空间分数阶扩散方程的数值解法.首先,利用Galerkin谱方法对方程在空间方向进行离散,然后,利用θ-方法对时间变量进行离散.利用能量方法,得到了全离散方程解的稳定性及误差估计.数值结果表明拟谱方法求解分数阶扩散方程数值解高精度和有效性. This paper investigates a numerical scheme for solving space fractional diffusion equations (SFDEs) based on spectral and pseudo-spectral method. The equation is firstly discretized in space variable x by using the Galerkin spectral method. And then, 0-method is employed to discretize the time variable t. The stability and error estimate for the approx- imation solution of the full discretized equation are derived by energe methods. Numerical examples show a good agreement with the theoretical anlysis.
作者 郑敏玲
出处 《应用数学学报》 CSCD 北大核心 2015年第3期434-449,共16页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11071119 11101140) 湖州市自然科学基金(2013YZ06)资助项目
关键词 空间分数阶扩散方程 稳定性 误差估计 谱方法 riemann-liouville derivative pseudo-spectral method collocation method fractional diffusion equation
  • 相关文献

参考文献22

  • 1Langlands A T M, Henry B I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys., 2005, 205: 719-736.
  • 2Yuste S B, Acedo L. On an explicit finite difference method for fractional diffusion equations. SIAM J. Numer. Anal., 2005, 42: 1862-1874.
  • 3Yuste S B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys., 2006, 216: 264-274.
  • 4Tadjeran C, Meerschaert M M, Scheffler H P. A second order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys., 2006, 213: 205-213.
  • 5Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math., 2004, 172: 65-77.
  • 6Chen C M, Liu F, Burrage K. Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput., 2008, 198: 754-769.
  • 7Baeumer B, Kovács M, Meerschaert M M. Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl., 2008, 55: 2212-2226.
  • 8Shen S, Liu F, Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algor., 2011, 56: 383-403.
  • 9庄平辉,刘发旺.空间-时间分数阶扩散方程的显式差分近似[J].高等学校计算数学学报,2005,27(S1):223-228. 被引量:15
  • 10覃平阳,张晓丹.空间-时间分数阶对流扩散方程的数值解法[J].计算数学,2008,30(3):305-310. 被引量:29

二级参考文献18

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部