期刊文献+

矩形孔径参量阵相控非线性声场建模与实验研究 被引量:2

Modeling and experimental investigation on rectangular aperture parametric array phased nonlinear acoustic field
下载PDF
导出
摘要 为了解决一阶抛物近似KZK方程无法直接对相控非线性声场进行建模的问题,依据原频声场准直特性构建等效参量阵原频自然指向性声场模型,建立其与原频相控声场的等效关系,将相控非线性声场的建模问题转换为等效参量阵声源条件的求解问题,同时提出算子分裂时域有限差分数值计算方法,实现了基于KZK抛物方程的矩形孔径参量阵相控非线性声场数值计算。以SES2000标准型参量声呐辐射相控非线性声场为研究对象,开展了计算机仿真和水池对比实验研究,研究结果验证了构建声场模型及其数值计算方法的有效性。 In order to solve the problem of that phased nonlinear acoustic field could not be modeled by one order parabolic approximation KZK equation,an equivalent parametric array primary frequency natural directivity acoustic field model was built based on the collimation characteristic of primary frequency acoustic field.The equivalent relation between this field and the primary frequency phased acoustic field was deduced,so the problem of phased nonlinear acoustic field modeling was transferred to the calculation of equivalent parametric array source condition,and an operator split time domain finite difference calculation method was derived.The rectangular aperture parametric array phased nonlinear field calculation based on KZK equation was realized.Taking the SES2000 parametric array acoustic field as object,the phased nonlinear acoustic model and the corresponding field calculation method were examined by computer simulation and pool contrast experiment.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第12期23-28,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(41327004 41306182) 高等学校博士学科点专项科研基金(20112304130003) 中央高校基本科研业务费(HEUCF140501)
关键词 矩形孔径参量阵 相控非线性声场 声场建模 rectangular aperture parametric array phased nonlinear acoustic field acoustic field modeling
  • 引文网络
  • 相关文献

参考文献3

二级参考文献26

  • 1马勇,马青玉,章东,龚秀芬,刘晓宙.超谐波声场及其生物组织成像的理论及实验研究[J].声学学报,2006,31(5):433-437. 被引量:10
  • 2龚秀芬 朱哲民 杜功焕.有限振幅与小振幅平面波的非线性相互作用研究.南京大学学报:自然科学版,1979,3:19-28.
  • 3杜功焕 龚秀芬.在强无规噪声场中有规声能量的抑制.声学学报,1984,9(3):1984-133,129.
  • 4Hamilton M F and Blackstock D T 1998 Nonlinear Acoustics (New York: Academic Press).
  • 5Wen J J and Breazeale M A 1988 J Acoust. Soc. Am. 831752.
  • 6Ding D, Shui Y, Lin J and Zhang D 1996 J Acoust. Soc.Am. 100 727.
  • 7Ding D 2000 J. Acoust. Soc. Am. 108 2759.
  • 8Zhang D, Lu R R and Gong X F 2002 Chin. Phys. Lett.18 1085.
  • 9Zhang D, Gong X F and Zhang B 2002 J. Acoust. Soc.Am. 111 45.
  • 10Zhang D, Liu X Z and Gong X F 2003 Chin. Phys. Lett.20 1088.

共引文献6

同被引文献12

引证文献2

二级引证文献3

;
使用帮助 返回顶部