期刊文献+

工业控制网络流量特性分析与建模 被引量:6

Industrial Control Network Traffic Characteristic Analysis and Modeling
下载PDF
导出
摘要 采集了真实环境中的基于工业以太网的工业控制网络流量,通过对流量特性的分析发现其流量特性与普通IT网络流量特性的差异,并详细分析了其成因.通过分析发现,工业控制网络流量分布整体较规律,数据包时间间隔既不服从泊松分布又不服从重尾分布,小时间尺度上具有周期性,没有表现出自相似的特性,大时间尺度上则较为平稳.最后,应用季节乘积ARIMA模型对工业网络流量进行了实证分析.结果表明:应用该模型对工业网络流量进行建模预报是可行可靠的. This paper collects network traffic of an industrial control system that is based on industrial Ethernet in a real environment. By analyzing the characteristics of the network, it is found that there is an obvious difference between the characteristics of industrial control network and ordinary IT network. The cause of the difference is carefully analyzed. The traffic of industrial control network has a relatively regularity. As a whole, the distribution packet intervals neither follow a Poisson distribution nor subject to heavy tailed distribution. In a small time scale, the traffic has a periodicity and it does not show self-similarity, while it is stationary in a large time scale. Finally, a multiple seasonal ARIMA model is used to make empirical analysis on the industrial network traffic. Results show that the model is feasible and reliable.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2015年第7期991-999,共9页 Journal of Beijing University of Technology
基金 北京市高等学校人才强教深化计划\中青年骨干人才培养计划项目(PHR201108016)
关键词 工业控制网络 流量特性 流量模型 乘积季节ARIMA industrial control network traffic characteristics traffic model multiple seasonal ARIMA
  • 相关文献

参考文献10

  • 1冯冬芹,廖智军,金建祥,褚健.基于以太网的工业控制网络实时通信模型研究[J].仪器仪表学报,2005,26(9):891-894. 被引量:36
  • 2王浩,吴中福,王平.工业控制网络安全模型研究[J].计算机科学,2007,34(5):96-98. 被引量:16
  • 3The University of Waikato.traffic traces[EB/OL].[2014-01-10].http:∥wand.net.nz/wits/Waikato/1/20040507-233830-64.php.
  • 4侯重远,江汉红,芮万智,刘亮.工业网络流量异常检测的概率主成分分析法[J].西安交通大学学报,2012,46(2):70-75. 被引量:22
  • 5张宾,杨家海,吴建平.Internet流量模型分析与评述[J].软件学报,2011,22(1):115-131. 被引量:93
  • 6KARAGIANNIS T,MOLLE M,FALOUTSOS M,et al.A nonstationary poisson view of Internet traffic[C]∥23rd Annual Joint Conference of the IEEE Computer and Communications Societies.Hong Kong:IEEE,2004,3:1558-1569.
  • 7LELAND W E,TAQQU M S,WILLINGER W,et al.On the self-similar nature of Ethernet traffic[C]∥ACM SIGCOMM Computer Communication Review.New York:ACM,1993,23(4):183-193.
  • 8WILLINGER W,TAQQU M S,SHERMAN R,et al.Self-similarity through high-variability:statistical analysis of Ethernet LAN traffic at the source level[J].IEEE Transaction on Networking,1997,5(1):71-86.
  • 9SHUMMAP R H.Time series analysis and its applications[M].2nd ed.New York:Springer,2009:42-56.
  • 10王燕.应用时间序列分析[M].3版.北京:中国人民大学出版社,2012 :160-226.

二级参考文献31

共引文献172

同被引文献47

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部