期刊文献+

糖基生物质生产食品化工产品研究进展 被引量:4

Advances in researches on producing food and chemical products from sugar-based biomass
下载PDF
导出
摘要 利用生物质为原料通过生物和化工技术制取化工产品可以有效合理地利用农作物副产品,减少污染。但是目前该类产品的生产工艺和技术仍不成熟,产品开发中仍存在较多的技术难题。本文综述了未来有可能商业化的几种生物质食品化工产品,阐明其工艺可行性和其存在的巨大市场前景,同时指出目前食品化工产品生产过程中存在的成本过高、催化剂的耐受性和选择性较差、目标产物分离困难等技术难题。并进一步阐述了未来糖基生物质食品化工产品的研究方向主要为开发更为经济的发酵条件、耐受性和经济性更好的催化剂、更加高效的分离工艺和更具经济效益的新型食品化工产品。在当下石化资源愈加紧缺和生产工艺技术越来越成熟的情况下,糖基生物质食品化工产品的市场竞争力和潜力将会得到极大提升。生物基化工产品的发展将会推动生物炼制技术和化工技术的变革与进步,产生巨大经济效益和社会效益。 Agricultural by-products can be utilized to produce chemical products by biochemical reaction, and it is not harmful to the environment. But the process and technology are still in their infancy, and there are still many problems in product development. This paper focuses on the possibility of bio-based chemical product which may be commercialized. The process feasibility and its huge market prospects are indicated. The existing technical problems, such as high costs, poor selectivity of catalyst and difficulty in separating target product etc are presented. The future direction of development is to develop more economical fermentation conditions, better economic performance catalyst, more efficient separation process, more cost-effective new bio-based chemical product and so on. Under the circumstances of petrochemical resources becoming more scarce and biomass utilization technology becoming more mature, the market competitiveness of sugar-based biomass food and chemical product can be greatly improved. The development of bio-based chemical products will promote the reform and progress of bio-refining technology and chemical technology, and bring about great economic and social benefits.
出处 《化工进展》 EI CAS CSCD 北大核心 2015年第1期212-218,共7页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(面上)(21176227) 河南省教育厅重点科技攻关(13A530642)项目
关键词 生物质 食品添加剂 生化工程 化工产品 生物化工 biomass food additives biochemical engineering chemical products bio-chemical
  • 相关文献

参考文献21

  • 1尤新.糖类代替石油原料制取食品添加剂和配料发展动向[J].中国食品添加剂,2005,16(6):1-6. 被引量:2
  • 2Clara Delhomme,Dirk Weuster-Botz,Fritz E.K-uhn.Succinic acidfrom renewable resources as a C4 building-block chemical--Areview of the catalytic possibilities in aqueous media[J].GreenChem.,2009,11(1):13-26.
  • 3Zhang H,Cai J,Dong J,et al.High-level production of poly(β-L-malic acid) with a new isolated Aureobasidium pullulansstrain[J].Applied Microbiology and Biotechnology,2011,92(2):295-303.
  • 4Jang Y S,Kim B,Shin J H,et al.Bio‐based production of C2–C6platform chemicals[J].Biotechnology and Bioengineering,2012,109(10):2437-2459.
  • 5Gu Z,Liu W,Wei J,et al.Regulation of N-methyl-D-aspartic acid(NMDA) receptors by metabotropic glutamate receptor[J].Journalof Biological Chemistry,2012,287(13):10265-10275.
  • 6胡育骄,刘勇,程池.L-天冬氨酸生产、应用与市场前景[J].食品与发酵工业,2013,39(6):120-124. 被引量:16
  • 7Kluetzman K S,Thomas R M,Nechamen C A,et al.Decreaseddegradation of internalized follicle-stimulating hormone caused bymutation of aspartic acid 6.30550 in a protein kinase-CK2 consensussequence in the third intracellular loop of human follicle-stimulatinghormone receptor[J].Biology of Reproduction,2011,84(6):1154-1163.
  • 8Goldberg V M,Todinova A V,Shchegolikhin A N,et al.Kineticparameters for solid-phase polycondensation of L-aspartic acid:Comparison of thermal gravimetric analysis and differential scanningcalorimetry data[J].Polymer Science Series B,2011,53(1-2):10-15.
  • 9Liu M,Su H,Tan T.Synthesis and properties of thermo-andpH-sensitive poly (N-isopropylacrylamide)/polyaspartic acid IPNhydrogels[J].Carbohydrate Polymers,2012,87(4):2425-2431.
  • 10Collins I , Hedges B , Harris L.The development of anovelenvironmentally friendly dual function corrosion and scaleinhibitor[C] //2001 SPE international symposium on oilfieldchemistry.Houston Texas,2002:13-16.

二级参考文献55

  • 1任鸿均.木糖醇的生产新技术及其应用[J].化工科技市场,2005,28(2):1-6. 被引量:23
  • 2Kadam KL, Chin CY, Brown LW. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover[J] J Ind Microbiol Biotechnol, 2008, 35:331 - 341.
  • 3Kwon SG, Park SW, Oh DK. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor [ J ]. J Biosci Bioeng, 2006, 101:13-18.
  • 4Ko BS, Rhee CH, Kim JH. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions[J]. Biotechnol Lett, 2006, 28:1 159-1 162.
  • 5Jeffries TW. Engineering yeasts for xylose metabolism[J]. Curr Opin Biotechnol, 2006, 17:320 - 326.
  • 6Oh Y J, Lee TH, Lee SH, et al. Dual modulation of glucose 6-phosphate metabolism to increase NADPH-depend- ent xylitol production in recombinant Saccharomyces cerevisiae[J]. J Mol Catal B: Enzym, 2007, 47:37 -42.
  • 7Cirino PC, Chin JW, Ingram LO. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures [J].Biotechnol Bioeng, 2006, 95:1 167-1 176.
  • 8Nyyssola A, Pihlajaniemi A, Palva A, et al. Production of xylitol from D-xylose by recombinant Lactococcus lactis [J]. J Biotechnol, 2005, 118:55 -66.
  • 9Povelainen M, Miasnikov AN. Production of xylitol by metabolically engineered strains of Bacillus subtilis [ J]. J Biotechnol, 2007, 128:24 - 31.
  • 10El-Kady IA, Moubasher MH, Mostafa ME. Accumulation of sugar alcohols by filamentous fugi [ J ]. Folia Microbiol (Prague) , 1995, 40:481 - 486.

共引文献68

同被引文献99

  • 1周立坤,庞纪峰,王爱琴,张涛.组合催化剂WO3+RaneyNi上高效转化菊芋秸秆制乙二醇(英文)[J].催化学报,2013,34(11):2041-2046. 被引量:9
  • 2周金沙,刘红梅.油茶籽的综合利用现状及前景分析[J].农产品加工(下),2006(7):58-60. 被引量:26
  • 3Weingarten R,Cao F,Luterbacher J S,et al. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents[J]. ChemCatChem,2014,6(8):2229-2234.
  • 4Ramli N A S,Amin N A S. Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production[J]. Fuel Processing Technology,2014,128:490-498.
  • 5Tao F R,Song H L,Chou L J. Catalytic conversion of cellulose to chemicals in ionic liquid[J]. Carbohydrates Research,2011,346(1):58-63.
  • 6Ding D Q,Wang J J,Xi J X,et al. High-yield production of levulinic acid from cellulose and its upgrading to gamma-valerolactone[J]. Green Chemistry,2014,16(8):3846-3853.
  • 7Gardebje S,Larsson A,Lofgren C,et al. Controlling water permeability of composite films of polylactide acid,cellulose,and xyloglucan[J]. Journal of Applied Polymer Science,2015,132(1):41219-41226.
  • 8Tao F R,Song H L,Yang J,et al. Catalytic hydrolysis of cellulose into furans in MnCl2-ionic liquid system[J]. Carbohydrate Polymers,2011,85(2):363-368.
  • 9Tao F R,Song H L,Chou L J. Hydrolysis of cellulose in SO3H-functionalized ionic liquids[J]. Bioresource Technology,2011,102:9000-9006.
  • 10Taherzadeh M J,Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials:A review[J]. Bioresources,2007,2(3):472-499.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部