期刊文献+

基于改进DBSCAN算法的激光雷达目标物检测方法 被引量:10

A Study of Laser Radar Object Detection Based on Improved DBSCAN Algorithm
下载PDF
导出
摘要 传统的DBSCAN聚类算法是基于密度的聚类算法,原始算法在搜索精度和搜索效率上存在一定的局限性。基于LUX4线激光雷达数据点的点云特点,结合DBSCAN算法存在的不足与路面目标物的实际情况,提出了1种基于改进的DBSCAN聚类算法,选取4个代表点取代对所有点的搜索和改进搜索半径使其随扫描的距离而变化的方法,实现激光雷达目标物的快速、准确检测。通过改进DBSCAN算法对雷达数据进行去噪声和聚类处理,根据检测物在激光雷达探测中的形状特征模型进行形状匹配。实验结果表明该改进算法能较好的识别出目标物,行人检测率由原始算法的61.90%提高到了80.95%,搜索时间较原始算法缩短了44.7%,解决了原始算法精度低、搜索慢的缺点。 The original DBSCAN has some limitations in the search accuracy and efficiency.The paper proposed a method of object detection using laser radar based on improved and fast DBSCAN clustering algorithm by taking into consideration of the characteristics of the data collected by LUX 4-line laser radar,the deficiency of original DBSCAN algorithm and the actual situation of road surface objects.The proposed method only searches 4represented points instead of all the points and improves the searching radius that changes by following the scanning distance.The noises are removed and the laser radar points are clustered by improved DBSCAN algorithm.The targets are matched with the shape models of laser radar.The results show that the improved algorithm can accurately identify the objects.Pedestrian detection rate increases from 61.90% of the original algorithm to 80.95%,and the searching time comparing with the original algorithm is shortened 44.70%.The study results clearly indicate that the improved algorithm has an advantage of high precision and fast searching.
出处 《交通信息与安全》 2015年第3期23-28,共6页 Journal of Transport Information and Safety
基金 国家科技支撑计划课题(批准号:2014BAG01B05) 国家自然科学基金项目(批准号:51208401) 中央高校基本科研业务费专项基金项目(批准号:133244003)资助
关键词 交通安全 目标物检测 聚类算法 激光雷达 基于密度聚类 traffic safety object detection clustering algorithm laser radar DBSCAN
  • 相关文献

参考文献12

二级参考文献142

  • 1刘高军,朱嬿.基于数据挖掘技术的建筑企业信用评价[J].中国矿业大学学报,2005,34(4):494-499. 被引量:21
  • 2郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 3王荣本,郭烈,金立生,顾柏园,余天洪.智能车辆安全辅助驾驶技术研究近况[J].公路交通科技,2007,24(7):107-111. 被引量:40
  • 4CHEN M S, HAN J H, YU P S. Data mining: An overview from a database perspective [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866 -883.
  • 5KAUFAN L, RPUSSEEUW P J. Finding groups in data: An introduction to cluster analysis [ M]. New York: John Wiley & Sons, 1990.
  • 6ESTER M, KRIEGEL H P, XU X W. Knowledge discovery in large SPATIAL database: Focusing techniques for efficient class identification [ C]//Proceedings of the 4th International Symposium on Advances in Spatial Databases, LNCS 951. London: Springer-Verlag, 1995:67-82.
  • 7ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial database with noise [ C]//KDD - 96: Proceedings of the 2nd International Conference on Knowledge Discovering and DataMining. Portland, Oregon: [ s. n.], 1996:226-231.
  • 8GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998:73-84.
  • 9AGRAWAL R, GEHRKE J, GUNOPOLOS D, et al. Automatic subspace clustering of high dimensional data for data mining application [C]// Proceedings of the ACM SIGMOD International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001:331-340.
  • 10ALEXANDROS N, YANNIS T, YANNIS M. C2P: Clustering based on closest pairs [ C]//Proceedings of the 27th International Conference on Very Large Databases. Roma: Morgan Kaufmann Publishers, 2001:331-340.

共引文献292

同被引文献61

引证文献10

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部