期刊文献+

Homology roses and the D(2)-problem

Homology roses and the D(2)-problem
原文传递
导出
摘要 For a commutative ring R with a unit, an R-homology rose is a topological space whose homology groups with R-coefficients agree with those of a bouquet of circles. In this paper, we study some special properties of the fundamental groups of R-homology roses and their covering spaces, from which we obtain some results supporting the Carlsson conjecture on free(Zp)ractions. In addition, we discuss how to search candidates of the counterexamples of Wall's D(2)-problem among R-homology roses and R-acyclic spaces and propose some candidates. For a commutative ring R with a unit, an R-homology rose is a topological space whose homology groups with R-coefficients agree with those of a bouquet of circles. In this paper, we study some special properties of the fundamental groups of R-homology roses and their covering spaces, from which we obtain some results supporting the Carlsson conjecture on free (Zp)r actions. In addition, we discuss how to search candidates of the counterexamples of Wall's D(2)-problem among R-homology roses and R-acyclic spaces and propose some candidates.
出处 《Science China Mathematics》 SCIE CSCD 2015年第8期1753-1770,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11371188) the PAPD(Priority Academic Program Development)of Jiangsu Higher Education Institutions
关键词 homology rose DEFICIENCY group cohomology Carlsson conjecture D(2)-problem gap efficiency Cockcroft property 玫瑰 同源 拓扑空间 特殊性质 空间问题 候选人 交换环 单位元
  • 相关文献

参考文献39

  • 1Adem A. Constructing and deconstructing group actions. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory. Contemporary Mathematics, 346. Providence, RI: Amer Math Soc, 2004, 1-8.
  • 2Adem A, Milgram R J. Cohomology of Finite Groups. Grundlehren der Mathematischen Wissenschaften 309. Berlin: Springer-Verlag, 1994.
  • 3Allday C, Puppe V. Cohomologieal Methods in Transformation Groups. Cambridge Studies in Advanced Mathematics, 32. Cambridge: Cambridge University Press, 1993.
  • 4Alperin 3 L. LocM Representation Theory Modular Representations as an Introduction to the Local Representation Theory of Finite Groups. Cambridge Studies in Advanced Mathematics, 11. Cambridge: Cambridge University Press, 1986.
  • 5Berriek A J, Hillman J A. Perfect and aeyclie subgroups of finitely presentable groups. J London Math Soc (2), 2003, 68:683-698.
  • 6Beyl R, Waller N. Examples of exotic free 2-complexes and stably free nonfree modules for quaternion groups. Algebr Geom Topoi, 2008, 8:1-17.
  • 7Bridson M, Tweedale M. Deficiency and abelianized deficiency of some virtually free groups. Math Proc Cambridge Philos Soc, 2007, 143:257-26.
  • 84 Brown K. Cohomology of Groups. Graduate Texts in Mathematics, 87. New York-Berlin: Springer-Verlag, 1982.
  • 9Brown K, Kahn P. Homotopy dimension and simple cohomological dimension of spaces. Comment Math Helv, 1977, 52:111-127.
  • 10Browning W. Homotopy types of certain finite CW-complexes with finite fundamental group. PhD thesis, Cornell University, 1978.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部