期刊文献+

量子K-近邻算法 被引量:7

Quantum K-nearest neighbor algorithm
下载PDF
导出
摘要 为了提高经典K-近邻算法的效率,引入量子计算理论,将Grover算法中的Oracle算子以及相位估计算法嵌入经典K-近邻算法,提出一种量子K-近邻算法.该算法首先将样本点和待分类点的向量信息制备成量子叠加态,采用可逆的量子控制交换门并行计算待分类点和样本点的相似度,然后利用相位估计算法将相似度信息存储到量子比特中,最后使用Grover算法一次性搜索出最相似的k个点.对嵌入的量子计算部分的理论分析结果表明,量子K-近邻算法可以明显降低经典计算复杂度,且提出的算法在已有算法计算复杂度O(RkM)的基础上,再次带来了k值的二次加速O(RkM),其中R为Oracle算子的执行次数,M为样本全局个数. A novel quantum K-nearest neighbor algorithm is designed to improve the efficiency by introducing the theory of quantum computation and embedding the Oracle operator of Grover algo- rithm and the phase estimation algorithm in classic K-nearest neighbor algorithm. In the proposed al- gorithm, the vector information of sample points and to-be-classified points is prepared to be quan- tum superposition, and quantum reversible c-swap gate is used to parallel compute the similarity. Then the similarity is stored in qubit by using quantum phase estimation, and the k most similar points are found once by the Grover algorithm. Through theoretical analysis of the embedded quan- tum computing, the results show that the quantum K-nearest neighbor algorithm can significantly re- duce the computational complexity of classical algorithms and the proposed algorithm runs faster than other existing algorithms O(Rk√M) with the k value of the second acceleration O(Rk√M) for solving the same problem. Wherein R represents Oracle execution times and M is global number of samples.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期647-651,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61170321) 高等学校博士学科点专项科研基金资助项目(20110092110024)
关键词 机器学习 K-近邻算法 量子算法 machine learning K-nearest neighbor algorithm quantum algorithm
  • 相关文献

参考文献18

  • 1Beckrnann B, Kriegel H P, Schneider R, et al. The R*-tree: an efficient and robust access method [ C ]// 9th ACM S1GMOD International Conference on Man- agement of Data. Atlantic City, NY,USA, 1990: 322- 331.
  • 2White D A, Jain R. Similarity indexing with the SS-tree [ C ]//Proceedings of the Twelfth International Confer- ence on Data Engineering. New Orleans, LA, USA, 1996:516-523.
  • 3Katayama N, Satoh S. The SR-tree: an index structure for high-dimensional nearest neighbor queries [ J ]. SIG- MOD Record, 1997, 26(2) 369 -380.
  • 4Goodsell G. On finding p-th nearest neighbours of scat- tered points in two dimensions for small p [J]. Comput- er Aided Geometric Design, 2000, 17(4) : 387 - 392.
  • 5Piegl L A, Tiller W. Algorithm for finding all k nearest neighbors[ J]. Computer-Aided Design, 2002, 34 (2) : 167 - 172.
  • 6Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization proble[ C ]// Proceedings of the 2000 Congress on Evolutionary Com- putation. San Diego, CA, USA, 2000, 2:1354 - 1360.
  • 7Lloyd S, Mohseni M, Rebentrost P. Quantum principal component analysis[ J]. Nature Physics, 2014, 10(9) : 631 - 633.
  • 8Lloyd S, Mohseni M, Rebentrost P. Quantum algo- rithms for supervised and unsupervised machine learning [J/OL]. Eprint arXiv, 2013. http://arxiv, org/pdf/ 1307. 0411 v2. pdf.
  • 9Ai'meur E, Brassard G, Gambs S. Quantum speed-up for unsupervised learning [J] Machine Learning, 2013, 90(2) : 261 -287.
  • 10Wiebe N, Kapoor A, Svore K. Quantum algorithms for nearest-neighbor methods for supervised and unsu- pervised learningE J/OL1. Eprint arXiv, 2014. http :// arxiv, org/pdf/1401. 2142v2. pdf.

二级参考文献19

  • 1Nielsen M A, Chuang I L. Quantum computation and quantum information[M]. Cambridge University Press, Cambridge, 2000.
  • 2Vedral V, Plenio M B. Basics of quantum computation[J]. Rep. Prog. Quantum Electron. , 1998:22.
  • 3Shot P W. Algorithms for quantum computation: discrete log arithms and factoring[C].Proc. 35^th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, LosAlamitos, CA, 1994:124-134.
  • 4Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM J. Comp., 1997, 26:1484-1509.
  • 5Grover Lov K. Quantum mechanics helps in searching for a nee die in a haystack[J]. Phys. Rev. Lett., 1997, 79: 325-328.
  • 6Brassard G, Hoyer P, Tapp A. Quantum Counting[C].Proceedings of the 25^th International Colloquium on Automata, Language, and Programming: ICALP, Lecture Notes in Computer Science, Springer, Berlin, 1998, 1443: 820.
  • 7Mitchell T. Machine Learning[M]. McGraw Hill, 1997.
  • 8Duda R O, Hart P E, Stork D G. Pattern classification (Second Edition) [M]. Wiley-Interscience, New York, 2001.
  • 9Webb A R. Statistical pattern recognition (Second Edition) [M]. John Wiley & Sons Ltd, 2002.
  • 10Sasaki M, Carlini A, Jozsa R. Quantum template matching [J]. Pkysical ReviewA, 2001, 64, 022317.

共引文献3

同被引文献57

引证文献7

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部