期刊文献+

代价敏感学习中的损失函数设计 被引量:15

Design of loss function for cost-sensitive learning
下载PDF
导出
摘要 一般的学习算法通过最小化分类损失使分类错误率最小化,而代价敏感学习则以最小化分类代价为目标,需构造代价敏感损失.本文探讨代价敏感损失的设计准则,首先介绍基于代价敏感风险优化的代价敏感学习方法,然后在Bayes最优分类理论框架下,提出两条代价敏感损失设计准则.接着采用两种常用代价敏感损失生成方法构造平方损失、指数损失、对数损失、支持向量机损失等经典损失函数的代价敏感扩展形式.根据所提出的设计准则,从理论上分析这些代价敏感损失的性能.最后通过实验表明,同时满足两条设计准则的代价敏感损失能有效降低分类代价,从而证明了本文提出的代价敏感损失设计准则的合理性. Conventional learning algorithms minimize the classification error through minimizing the classification loss. However, the cost-sensitive learning minimizes the classification cost; thus, cost-sensitive losses have to be constructed. This paper studies the design criteria for cost-sensitive loss functions. Firstly, cost-sensitive learning methods based on cost-sensitive risk minimization are briefly introduced. Then, under the theory framework of Bayes optimal classification, two design guidelines of cost-sensitive loss function are proposed. The cost-sensitive extensions of several classic loss functions (e.g., square loss, exponential loss, log loss and support vector machine (SVM) loss) are generated via two most popular construction methods of cost-sensitive loss. The performances of these cost-sensitive losses are theoretically analyzed based on the proposed two design guidelines. Experimental results have shown that those cost-sensitive losses that satisfy both of the two design criteria significantly reduce classification costs, demonstrating the rationality of the proposed design criteria of cost-sensitive loss.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第5期689-694,共6页 Control Theory & Applications
基金 国家自然科学青年基金项目(31200496 61473156) 中国博士后基金项目(2014M551487) 江苏省博士后基金项目(1301009A)资助~~
关键词 学习算法 代价敏感学习 损失函数 Bayes最优决策 代价敏感损失 learning algorithms cost-sensitive learning loss function Bayes optimal decision cost-sensitive risk
  • 相关文献

参考文献14

  • 1ZHOU Z Z. Cost-sensitive learning [C] //Modeling Decision for Artificial Intelligence Lecture Notes in Computer Science. Berlin: Springer, 2011, 6820:17 - 18.
  • 2SAHIN Y, BULKAN S, DUMAN E. A cost-sensitive decision tree approach for fraud detection [J]. Expert Systems with Applications, 2013, 40(15): 5916 - 5923.
  • 3LU S J, LIU L, LU Y, et al. Cost-sensitive neural network classifiers for postcode recognition [J]. International Journal of Pattern Recog- nition and Artificial Intelligence, 2012, 26(5): 1 - 14.
  • 4CAO E ZHAO D Z, ZAIANE O. A PSO-based cost-sensitive neural network for imbalanced data classification [C] I/Trerzds and Appli- cations in Knowledge Discovery and Data Mining Lecture Notes in Computer Science. Berlin: Springer, 2013, 7867:452 - 463.
  • 5CAO E ZHAO D Z, ZAIANE O. An optimized cost-sensitive SVM for imbalanced data learning [C] //Advances in Knowledge Discov- ery and Data Mining Lecture Notes in Computer Science. Berlin: Springer, 2013, 7819: 280- 292.
  • 6LOZANO A C, ABE N. Multi-class cost-sensitive boosting with p- norm loss functions [C]//Proceeding of the 14th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008:506 - 514.
  • 7MASNADI-SHIRAZI H, VASCONCELOS N. Cost-sensitive boost- ing [J]. Pattern Analysis and Machine Intelligence, 2010, 33(2): 294 - 309.
  • 8付忠良.多分类问题代价敏感AdaBoost算法[J].自动化学报,2011,37(8):973-983. 被引量:32
  • 9李秋洁,茅耀斌,叶曙光,王执铨.代价敏感Boosting算法研究[J].南京理工大学学报,2013,37(1):19-24. 被引量:3
  • 10韩敏,穆大芸.基于Adaboost算法的回声状态网络预报器[J].控制理论与应用,2011,28(4):601-604. 被引量:8

二级参考文献22

  • 1涂承胜,陆玉昌.Boosting视角[J].计算机科学,2005,32(5):140-143. 被引量:2
  • 2闫明松,周志华.代价敏感分类算法的实验比较[J].模式识别与人工智能,2005,18(5):628-635. 被引量:14
  • 3凌晓峰,SHENG Victor S..代价敏感分类器的比较研究(英文)[J].计算机学报,2007,30(8):1203-1212. 被引量:35
  • 4HORNIK K, STINCHCOMBE M, WHITE H. Multi-layer feed-forward networks are universal approximators[J]. Neural Networks, 1989, 2(3): 359 - 366.
  • 5CAI X D. Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm[J]. Neurocomputing, 2007, 70(13/15): 2342 - 2353.
  • 6JAEGER H, HAAS H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78 - 80.
  • 7LIN X W, YANG Z H, SONG Y X. Short-term stock price prediction based on echo state networks[J]. Expert Systems with Applications, 2009, 36(3): 7313 - 7317.
  • 8GE Q, WEI C J. Multiresolution-based echo state network and its application to the longterm prediction of network traffic[C]//2008 International Symposium on Computational Intelligence and Design. Piscataway, N J: IEEE, 2008, 1 : 469 - 472.
  • 9SHI Z W, HAN M. Support vector echo state machine for chaotic time series prediction[J]. IEEE Transactions on Neural Networks, 2007, 18(2): 359 - 372.
  • 10FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119 - 139.

共引文献40

同被引文献105

  • 1郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33
  • 2胡正平,张晔.结构风险最小化近邻分析解决大规模训练集支持向量机学习问题[J].信号处理,2007,23(2):161-164. 被引量:3
  • 3杨俊燕,张优云,朱永生.ε不敏感损失函数支持向量机分类性能研究[J].西安交通大学学报,2007,41(11):1315-1320. 被引量:17
  • 4Vapnik V. Statistical learning theory, Second Edition [M]. New York: Springer, 2001.
  • 5Manel M R,Christos C. Support vector array processing [C]. Proceedings of the IEEE International Symposium on Antennas and Propagation Society, 2006.
  • 6Manel M-R,Jose Luis R-A,Gustavo C-V,et al. Kernel antenna array processing [J]. IEEE Transactions on Antennasand Propagation, 2007,55 (3):642-650.
  • 7Martfnez Ram6n M,Xu N,Christodoulou C G. Beamforming using support vector machines[J]. IEEE Transactions on Antennas and Wireless Propagation Letters, 2005(4):439--442.
  • 8Debasish B,Srimanta P, Dipak C P. Support vector regression [J]. Neural Information Processing-Letters and Reviews, 2007,11 (10) :203-224.
  • 9Gretton A, Herbrich R, Smola A. The kernel mutual infor- mation [R]. Max Planck Institute for Biological Cybernetics, Technical Report, Tuebingen, Germany,2003.
  • 10Vapnik V. Statistical learning theory[M]. 2nd ed. New York:Springer,2001.

引证文献15

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部