期刊文献+

不同媒介中的参量阵近场声场研究

Research on the parametric array's near-field acoustic characteristics in different mediums
下载PDF
导出
摘要 在众多描述非线性声波传播的理论模型中,KZK方程能够准确地描述有限振幅声波传播的衍射、吸收及非线性效应,对求解参量阵近场声场有着明显的优势,因而成为描述非线性声场最为精确的方程之一。从KZK方程的频域求解出发,利用二阶对角隐式龙哥库塔法(second-order Diagonal Implicit Runge-Kutta,DIRK2)和Crank-Nicolson有限差分法(Crank-Nicolson Finite Difference,CNFD)相结合的有限差分算法,对在不同媒介中传播的参量阵近场声场特性进行研究,旨在对参量阵能量累积过程有进一步的理解,为参量阵转换效率的提高提供初步的探索,为参量阵的进一步工程应用提供相应的理论指导。 In numerous theoretical models of describing the nonlinear acoustic wave propagation, the KZK equation can accurately describe diffraction, absorption and the nonlinear propagation effects of finite amplitude sound beam, thus becomes one of the most accurate equation describing nonlinear ultrasonic field. In this paper, based on the frequency domain solution of the KZK equation, using second-order Diagonal Implicit Runge-Kutta(DIRK2) method and the Crank-Nicolson Finite Difference(CNFD) method of finite difference algorithm, the near-field acoustic characteristics of the parametric array in different propagation mediums are studied, the results of this paper may provide the corresponding theoretical basis for further engineering application.
出处 《声学技术》 CSCD 北大核心 2015年第3期193-197,共5页 Technical Acoustics
基金 基于某平台的参量阵技术研究(9140c20010613c20078) 国家自然科学基金青年科学基金资助项目(11204050)
关键词 参量阵 近场声场 KZK方程 传播媒介 the parametric array acoustic characteristics of the near-field KZK equation propagation medium.
  • 引文网络
  • 相关文献

参考文献11

  • 1何祚镛,赵玉芳.声学理论基础[M].北京:国防工业出版社,1986.
  • 2李颂文.参量阵及其在水声工程中的应用进展[J].声学技术,2011,30(1):9-16. 被引量:23
  • 3Westervelt. E J. Parametric acoustic array[J]. J. Acoust. Soc. Am, 1963, 35(4): 535-537.
  • 4Berktay. H. O. Possible Exploitation of Nonlinear Acoustics in Underwater Transmitting Applications[J]. J. Sound and Vibration, 1965, 2(4): 435-461.
  • 5李颂文.不同波束形成的参量阵近场比较[J].声学技术,2001,20(2):81-83. 被引量:3
  • 6Zabolotskaya E A, Khokhlov R V. Quasi-plane waves in the nonli- near acoustics of confined beams[J]. Sov. Phys. Acoust, 1969, 15(1): 35-40.
  • 7Kuznetsov V P. Equations of nonlinear acoustics[/]. Sov. Phys. Acoust, 1970, 16(4): 467-470.
  • 8Aanonsen S I, Barkve T, Tjotta J N. Distortion and Harmonic Generation in the Near-field of a Finite Amplitude Sound Beam[J]. J. Acoust. Soc. Am., 1984, 75(3): 749-768.
  • 9Thomas L. Szabo. Time domain wave equations for lossy media obeying a frequency power law[J]. J. Acoust. Soc. Am., 1994, 96(1): 491-500.
  • 10Naze Tjotta J, Tjotta S, Vefring E H. Propagation and interaction of two coUinear finite amplitude sound beams[j]. J. Acoust. Soc. Am., 1990, 88(6): 2859-2870.

二级参考文献45

  • 1李颂文.矩形换能器参量阵近场声场研究[J].声学技术,2004,23(z1):351-352. 被引量:1
  • 2姜雪,李颂文.基于伪随机序列的多波束水声探测系统的信道估计技术[J].声学技术,2007,26(3):389-394. 被引量:4
  • 3[1]J.Durin:Exact solution for nondiffracting beams.I.The scalar theory[J].Opt.Soc.Am.1987,A4(4):651-654.
  • 4[2]Westervelt.P.J, Parametric acoustic array[J].J.Acoust.Soc.Am 1963,35(4):535-537.
  • 5[3]E.H.Verfring,J.N.Tjotta and S.Tjotta,Nonlinear effects in the soundfield of bifrequency source[A].Pro-ceeding of 12th ISNA[C],London Edited by M.F.Hamilton and D.T.Blackstock,Elsevier Science Publishers Ltd,1990:251-256.
  • 6[4]Jian-yu Lu and J.F.Greenleaf,Ultrasonic nondiffracting transducer for medical imaging[J].IEEE Trans.Ultra and Freq.Contrl.1990,37(5):438-447.
  • 7[5]J.Zemanek.Beam behavior within the near field of a vibrating piston[J],J.Acoust.Soc.Am 1971,49(1):181-191.
  • 8[6]J.N.Tjotta and S.Tjotta,E.H.Verfring,Effects of focusing on the nonlinear interaction between two collinear finite amplitude sound beam[J].J.Acoust.Soc.Am 1991,89(2):1017-1027.
  • 9Oalvin R, Wang L S. Measured channel characteristics and the corresponding performance of an underwater acoustic communication system using parametric transduction[J]. IEEE Proc.-Rudul: Sonar. Nuvig, 2001, 147(2): 247-253.
  • 10Smith, B V. Conditions for distortionless underwater communications using parametric array[J]. Acoustica, 1995, $1(1): 161-166.

共引文献25

;
使用帮助 返回顶部