摘要
Analysis-suitable T-splines (AS T-splines) are a mildly topological restricted subset of T-splines which are linear independent regardless of knot values [1-3]. The present paper provides some more iso-geometric analysis (IGA) oriented properties for AS T- splines and generalizes them to arbitrary topology AS T-splines. First, we prove that the blending functions for analysis-suitable T-splines are locally linear independent, which is the key property for localized multi-resolution and linear independence for non-tensor- product domain. And then, we prove that the number of T-spline control points contribute each Bezier element is optimal, which is very important to obtain a bound for the number of non zero entries in the mass and stiffness matrices for IGA with T-splines. Moreover, it is found that the elegant labeling tool for B-splines, blossom, can also be applied for analysis-suitable T-splines.
Analysis-suitable T-splines (AS T-splines) are a mildly topological restricted subset of T-splines which are linear independent regardless of knot values [1-3]. The present paper provides some more iso-geometric analysis (IGA) oriented properties for AS T- splines and generalizes them to arbitrary topology AS T-splines. First, we prove that the blending functions for analysis-suitable T-splines are locally linear independent, which is the key property for localized multi-resolution and linear independence for non-tensor- product domain. And then, we prove that the number of T-spline control points contribute each Bezier element is optimal, which is very important to obtain a bound for the number of non zero entries in the mass and stiffness matrices for IGA with T-splines. Moreover, it is found that the elegant labeling tool for B-splines, blossom, can also be applied for analysis-suitable T-splines.