期刊文献+

不确定系统鲁棒协方差交叉融合稳态Kalman滤波器 被引量:7

Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems
下载PDF
导出
摘要 针对带不确定模型参数和噪声方差的线性离散多传感器系统,基于极大极小鲁棒估值原理,该文提出一种鲁棒协方差交叉(CI)融合稳态Kalman滤波器。首先,用引入虚拟噪声补偿不确定模型参数,把模型参数和噪声方差两者不确定的多传感器系统转化为仅噪声方差不确定的系统。其次,应用Lyapunov方程证明局部鲁棒Kalman滤波器的鲁棒性,进而保证CI融合Kalman滤波的鲁棒性,且证明了CI融合器的鲁棒精度高于每个局部滤波器的鲁棒精度。最后,给出一个仿真例子来说明如何搜索不确定参数的鲁棒域,并验证所提出的鲁棒Kalman滤波器的优良性能。 For the linear discrete time multisensor system with uncertain model parameters and noise variances, a Covariance Intersection (CI) fusion robust steady-state Kalman filter based on the minimax robust estimation principle is presented. Firstly, introducing the fictitious noise, the model parameter uncertainty can be compensated, so the multisensory system with both the model parameter and noise variance uncertainties is converted into that with only uncertain noise variances. Secondly, using the Lyapunov equation, the robustness of the local robust Kalman filter is proved, so the robustness of the CI fused Kalman filter is guaranteed and it is proved that the robust accuracy of the CI fuser is higher than that of each local filter. Finally, a simulation example shows that how to search the robust region of uncertain parameters and shows the good performance of the proposed robust Kalman filter.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第8期1900-1905,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60874063 60374026)资助课题
关键词 多传感器信息融合 不确定系统 鲁棒Kalman滤波器 虚拟噪声 协方差交叉融合 Multisensor information fusion Uuncertain system Robust Kalman filter Fictitious noise Covariance Intersection (CI) fusion
  • 相关文献

参考文献24

  • 1Hall D L and Llinas J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23.
  • 2Juliet S J and Uhlmann J K. General Decentralized Data F~sion with Covariance Intersection. Handbook of Multisensor Data Fusion: Theory and Practice[M]. Second Edition, New York: CRC Press, 2008: 319-342.
  • 3Hajiyev C G and Soken H E. Robust adaptive Kalman filter for estimation of UAY dynamics in the presence of sensor/ actuator faults[J]. Aerospace Science and Technology, 2013, 28(1): 376-383.
  • 4Le M S, Shin H S, Markham K, et al.. Cooperative allocation and guidance for air defence application[J]. Control Engineering Practice, 2014, 32: 236-244.
  • 5Feng J X, Wang Z D, and Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises[J]. Information Fusion, 2013, 14(1): 78-86.
  • 6Li X R, Zhu Y M, and Han C Z. Optimal linear estimation fusion-Part I: Unified fusion rules[C]. IEEE Transations on Information Theory, 2003, 49(9): 2192-2208.
  • 7Julier S J and Uhlmann J K. Non-divergent estimation algorithm in the presence of unknown correlations[C]. Proceedings of the IEEE American Control Conference, Albuquerque, 1997: 2369-2373.
  • 8Uhlmann J K. Covariance consistency methods for fault~tolerant distributed data fusion[J]. Information Fusion, 2003, 4(3): 201-215.
  • 9Julier S J and Uhlmann J K. Using covariance intersection for SLAM[J]. Robotics and Autonomous Systems, 2007, 55(1): 3-20.
  • 10Sijs J and Lazar M. State fusion with unknown correlation: Ellipsoidal intersection[J]. Automatica, 2012, 48: 1874-1878.

二级参考文献1

共引文献3

同被引文献35

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部