期刊文献+

非监控类别学习的分类策略与表征

Representation and Strategy in Unsupervised Category Learning
下载PDF
导出
摘要 类别学习是人类对不同类别加以归类的过程。类别信息的表征、分类策略运用的特点一直是类别学习研究的重点。非监控类别学习可分为直接的非监控类别学习和间接的非监控类别学习。直接的非监控类别学习(非限制任务,限制任务)中被试的分类策略具有分类"单维度倾向"策略特点,类别变异程度会影响类别表征;间接的非监控类别学习更倾向形成相似性表征,直接的非监控类别学习则为基于规则表征。现有的非监控类别学习的理论对分类策略和表征的解释仍显薄弱,不同学习任务下类别迁移和知识效应的研究还存在不足,未来研究还需要进一步验证知识效应对非监控类别学习的认知加工过程的影响、探索影响类别表征形成的因素等问题。 Categorization is a process in which human beings learn to classify different categories. The representation of categorical information and the implication of classification strategy are hot topics in the field of categorization. Category learning includes both supervised and unsupervised category learning. Whereas previous literature has had a lot of introductions on supervised category learning, this article mainly introduced unsupervised category learning in which how human beings represent information and apply strategy by direct vs. indirect ways. In the direct unsupervised category learning (constrained categorization tasks, unconstrained categorization tasks), individuals has a tendency to classify the strategy in a "one-dimension" way. Moreover, both within-category variances and between-category distance can influence category representation. Indirect categories of unsupervised learning are more likely to form a similar representation. By contrast, the representation of direct unsupervised category learning is rule-based. The current theories of unsupervised category learning can't completely explain category strategy and representation. The researches on category transfer and knowledge effect in different learning tasks are not yet sufficient. Further studies can test some issues such as the influence of knowledge effect on the cognitive process of unsupervised category learning and explore some factors that influence category representation formation.
出处 《心理科学进展》 CSSCI CSCD 北大核心 2015年第8期1390-1397,共8页 Advances in Psychological Science
基金 广东省人文社科项目:教育神经科学视野下的类别学习反馈机制研究(2013WYXM0095) 广东省教育科学高校项目:类别学习多系统转换的认知神经机制(2014GXJK059) 广州市哲学社会科学项目:类别学习反馈的认知神经机制研究(2012YB22)资助
关键词 非监控类别学习 限制任务 非限制任务 表征 unsupervised category learning constrained categorization tasks unconstrained categorization tasks representation
  • 相关文献

参考文献29

  • 1陈琳,莫雷,郑允佳,王雨函.类别学习的阻碍效应与双机制理论[J].心理科学,2013,36(2):356-363. 被引量:4
  • 2宋娟,吕勇.类别表征与策略的脑科学研究及对思维教学的启示[J].心理与行为研究,2008,6(1):75-80. 被引量:3
  • 3张恒超,阴国恩.类别学习研究范式述评[J].心理研究,2013,6(6):27-34. 被引量:3
  • 4Ashby, F. G, Alfonso-Rvese, L. A., Turkcn, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychology Review, 105, 442-481.
  • 5Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the dominance of unidimensional rules in unsupervised categorization. Perception & Psychophysics, 61, 1178-1199.
  • 6Billman, D., & Davies, J. (2005). Consistent contrast and correlation in free sorting. American Journal of Psychology, 118, 353-383.
  • 7Brooks, L. R., Squire-Graydon, R., & Wood, T. J. (2007) Diversion of attention in everyday concept learning Identification in the service of use. Memory & Cognition 35, 1-14.
  • 8Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118(2): 193-218.
  • 9Clapper, J. P. (2012). The effects of prior knowledge on incidental category learning. Journal of Experimental Psychology." Learning, Memory, & Cognition, 38(6): 1558-1577.
  • 10Colreavy, E., & Lewandowsky, S. (2008). Strategy development and learning differences in supervised and unsupervised categorization. Memory & Cognition, 36, 762-775.

二级参考文献117

  • 1莫雷.知识的类型与学习过程——学习双机制理论的基本框架[J].课程.教材.教法,1998,18(5):21-25. 被引量:48
  • 2[2]Damasio A R,Damasio H,Van Hoesen G W.Prosopagnosia:Anatomic basis and behavioral mechanisms.Neurology,1982,32(4):331~341
  • 3[3]Born R T,Bradley D C.Structure and function of visual area MT.Annual Review of Neuroscience,2005,28(1):157~189
  • 4[4]Johnson K,Mervis C.Effects of varying levels of expertise on the basic level of categorization.Journal of Experimental Psychology,1997,126(3):248~277
  • 5[5]Shelton C.Morphable surface medels.International Journal of Computer Vision,2000,38:75~91
  • 6[6]Freedman D J,Miller E K.Neural mechanisms of visual categorization.Neuroscience and Biobehavioral Reviews,2007,In press
  • 7[7]Tanaka J,Luu P,Weisbrod M,et al.Tracking the time course of object categorization using event-related potentials.NeuroReport,1999,10(4):829~835
  • 8[8]Tarr M J.Gauthier I.FAA:A flexible fosiform area for subordinate-level visual processing automatized by expertise.Natural Neuroscience,2000,3:764~769
  • 9[9]Gauthier I,Anderson A W,Tarr M J,et al.Levels of categorization in visual recognition studied with functional MBI.Current Biology,1997,7:645~651
  • 10[10]Little D M,Klein R,Shobat D M,et al.Changing patterns of brain activation during category learning revealed by functional MRI.Cognitive Brain Research,2004,22(1):84~93

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部