期刊文献+

模糊变分原理在求解结构屈曲临界载荷中的应用 被引量:1

APPLICATION OF THE FUZZY VARIATIONAL PRINCIPLE IN SOLVING THE CRITICAL BUCKLING LOAD OF STRUCTURES
原文传递
导出
摘要 首先在结构屈曲临界载荷的瑞利商变分中引入模糊参数,得到了结构屈曲临界载荷问题的模糊变分原理。进而基于模糊变分原理推导了模糊里兹法和模糊有限元法。这两种方法都可以直接得到问题的模糊解,避免了传统区间方法要先将模糊参数转化为区间参数求解,之后再由区间解构造模糊解的计算过程。因此,所提方法可以很大程度上减少计算量。最后通过数值算例表明了所提方法的可行性。 The fuzzy variational principle (FVP) of solving the critical buckling load of structures is derived by introducing fuzzy parameters into the Rayleigh quotient variation of the critical buckling load. Thereafter, the FVP is used to formulate the fuzzy Ritz method (FRM) and the fuzzy finite element method (FFEM), both of which are able to obtain fuzzy solutions in solving the critical buckling load. Compared with conventional interval methods, the presented two methods circumvent the processes that fuzzy parameters need to be transformed into interval parameters before constructing fuzzy solutions. The present methods significantly reduce computational cost. Numerical examples are employed to illustrate the applicability of the present methods.
出处 《工程力学》 EI CSCD 北大核心 2015年第8期29-35,共7页 Engineering Mechanics
基金 高等学校学科创新引智计划项目(B07009) 国家自然科学基金项目(11372025 11002013) 航空科学基金项目(2012ZA51010)
关键词 模糊变分原理 模糊里兹法 模糊有限元法 屈曲 临界载荷 fuzzy variational principle fuzzy Ritz method fuzzy finite element method buckling critical load
  • 相关文献

参考文献14

二级参考文献42

  • 1黄斌.随机参数结构的统计特征对[J].固体力学学报,2005,26(1):121-124. 被引量:3
  • 2禹智涛,吕恩琳,王彩华.结构模糊有限元平衡方程的一种解法[J].重庆大学学报(自然科学版),1996,19(1):53-58. 被引量:19
  • 3吕恩琳.结构模糊有限元平衡方程的一种新解法[J].应用数学和力学,1997,18(4):361-366. 被引量:24
  • 4朱位秋 任永坚.基于随机场局部平均的随机有限元法[J].固体力学学报,1988,(4):261-271.
  • 5刘良才 刘增良.模糊专家系统原理与设计[M].北京:北京航空航天大学出版社,1995..
  • 6Bucldey J J. Solving fuzzy equations[J]. Fuzzy Sets and System, 1992, 50: 1-14.
  • 7Rao S S and Sawyer J P. Fuzzy finite element approach for the analysis of imprecisely defind system [J]. AIAA Journal, 1995, 33(12): 2364-2370.
  • 8Li Chen, Rao S S. Fuzzy finite-element approach for the vibration analysis of imprecisely-defmded system [J]. Finite elements in Analysis and Desingn, 1997,27: 69-83.
  • 9Burczynski T, Skrzypczyk J. Fuzzy aspect of boundary clement method [J]. Engineering Analysis with Boundary Element, 1997, 19: 209-216.
  • 10Cherki A, Plessis G. Fuzzy behavior of mechanical systems with uncertain boundary conditions [J]. Comput methods Appl Mech Engrg, 2000, 189: 863-878.

共引文献56

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部