期刊文献+

基于田口算法和灰色关联理论的车削参数多目标优化研究 被引量:12

Multi-object Optimization of Parameters for Turning Based on Taughi Method and Grey Relational Analysis
下载PDF
导出
摘要 车削的优化过程受限于多个参数的限制,这也决定了对车削的优化必须是多目标优化。为了使车削的能耗和粗糙度同时降低,通过正交矩阵设计实验,减少实验数量的同时,运用灰色关联法对车削过程进行分析,衡量各个参数对各个目标函数的影响。并运用田口法进行多目标优化,找到了实验中较好的解。通过优化,粗糙度降低75.9%,切削比能降低73.1%,找到了能耗和粗糙度均较低的加工参数,并大大提升了加工效率。与实验比对,优化效果与理论差别不大,且加工参数易于满足优化的要求。 Due to the condition of the manufacture, the optimization of the process parameters for turning is constraint by many requirement, which determines that the optimization should be a multi-criteria optimization . This paper outline a way of optimizing the turning process to achieve the minimum power consumption and best surface quality. To cut off the number of experiment, the whole experiment is conducted by the orthogonal experiment. By using grey relational analysis, the influence of every parameter is estimated, which offers foundation to optimize. By using the Taughi method, better pa-rameters are found. After tested by the experiment, the optimum parameter is confirmed to achieve a better performance that power consumption is reduced by 73. 1% while the surface roughness reduced by 75. 9% . What is more, the parame-ters can increase the productivity significantly and are easy to get, which means that the optimization is achieved.
作者 许贤博 邵华
机构地区 上海交通大学
出处 《工具技术》 北大核心 2015年第8期15-18,共4页 Tool Engineering
关键词 正交试验 田口法 灰色关联理论 多目标优化 orthogonal experiment Taughi method grey relational analysis multi-objective optimization
  • 相关文献

参考文献11

  • 1Z M Bia, Lihui Wangb. Optimization of machining processes from the perspective of energy consumption: A case study [ J]. Journal of Manufacturing Systems, 2012,31 ( 4 ) : 420- 428.
  • 2Newman S T, Nassehi A, Imani-Asrai R. Energy efficient process planning for CNC machining CIRP [ J ]. Jounal of Manufacturing Science and Technology, 2012,5 ( 2 ) : 127- 136.
  • 3Diniz A E, Miearoni R. Cutting conditions for finish turning process aiming: the use of dry cutting [ J ]. International Journal of Machine Tools and Manufacture, 2002,42 ( 8 ) : 899-904.
  • 4Franci Cus, Joze Balic. Optimization of cutting process by GA approach[J]. Robotics and Computer Integrated Manu- facturing,2003,19 (1-2) : 113-121.
  • 5G Costa Rodrigues, M Cuypers, E Fallahi Sichani. Laser cutting with direct diode laser [ J ]. Lasers in Manufacturing, 2013,41:558-565.
  • 6Ramazan Cakiro glu, Adem Acir. Optimization of cutting pa- rameters on drill bit temperature in drilling by Taguchi method[J]. Measurement,2013,46(9) :3525-3531.
  • 7T M El-Hossainy, A A El-Zoghby, M A Badr,et al. Cutting parameter optimization when machining different materials [ J]. Materials and Manufacturing Processes ,2010,25 (10) :1101-1114.
  • 8胡贤金,杨冰,罗勇.基于模糊理论、遗传算法和神经网络的切削参数混合智能优化[J].工具技术,2014,48(2):9-14. 被引量:3
  • 9Anselmo Eduardo Diniz, Ricardo Micaroni. Cutting condi- tions for finish turning process aiming : the use of dry cutting [ J ]. International Journal of Machine Tools & Manufacture, 2002, 42 (8) :899-904.
  • 10Rajesh Kumar Bhushan. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites [ J ]. Journal of Cleaner Production,2013,39:242-254.

二级参考文献2

共引文献2

同被引文献110

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部